

Instruction-based planning for embodied AI with LLMs and VLMs

Salim Aissi Laure Soulier, Nicolas Thome, Olivier Sigaud

OC

Instruction based planning

- The robot must:
 - Understand the task goal
 - Perceive and interpret the environment

Textual instruction based planning

Leveraging Large Language Models (LLMs), internal

Common sense knowledge

Plan Go to fridge

- Go to fridgeOpen fridge
- Take tomato from fridge
- Close fridge
- Go to sinkbasin
- Clean tomato with sinkbasin
- Go to countertop
- Put tomato 1 in/on countertop

Textual instruction based planning

- <u>BUT:</u> grounding issues:
 - Affordance misunderstanding
 - Physics misunderstanding
- Recent works on fine-tuning embodied agents with RL, e.g., PPO [1,2]
- Open questions:
 - Generalization
 - Sensitivity

LLM possible answer: "You can use the egg to hammer the nail into the wall." Action

LLM possible answer: "Yes, you can carefully balance the bowling ball on the soda can."

Reward=1

[1] T. Carta, C. Romac, T. Wolf, S. Lamprier, O. Sigaud, and P.Y. Oudeyer. Grounding large language models in interactive environments with online reinforcement learning. ICML 2023 [2] W. Tan, W. Zhang, S. Liu, L. Zheng, X. Wang, and B. An. True knowledge comes from practice: Aligning Ilms with embodied environments via reinforcement learning. ICLR, 2024.

LLMs Prompt sensitivity

 Multiple studies have highlighted the sensitivity of LLMs to minor perturbations in the prompt, leading to substantially different outputs.

Our work:

- Analyzing LLMs' performance wrt prompt formulation for instruction based planning.
- Detailed analysis of how the LLM processes each change
- Propose a solution to mitigate prompt overfitting.

Problem statement

Partially Observable Markov Decision Process
 (POMDP) M = (S, V, A, T, R, G, O, γ)

- S is the state space.
- V is the language vocabulary
- A is the action space
- G is the goal space
- T is the transition function
- R the goal-conditioned reward function
- O is the observation function mapping a state to a textual description
- γ is the discount factor

Goal and observation formatted using a prompt formulation P_i

P1: Possible actions of the agent: close the fridge, Put the dirty plate in the fridge ... Goal: Clean the Kitchen Observation: You can see a fridge.... Inventory: You are carrying Next action of the agent: <u>P2:</u> <Begin Possible actions> close the fridge, Put the dirty plate in the fridge... <Close Possible actions>

<Begin Goal> Clean the Kitchen <End Goal> <Begin Observation> You can see a fridge....<End Observation>

<Begin Inventory>You are carrying...<End Inventory>

Next action of the agent:

Prompt overfitting protocol

Prompt Strategy

P₀: Possible actions of the agent: close the fridge, Put the dirty plate in the fridge ... Goal: Clean the Kitchen Observation: You can see a fridge. Empty! You can see ... Inventory: You are carrying Next action of the agent: switch P1: in order Goal: Clean the Kitchen Inventory: You are carrying ... Observation: You can see a fridge. Empty! You can see ... Possible actions of the agent: close the fridge and put the dirty Next action of the agent: P2: Riaid syntaxe <Begin Possible actions> close the fridge. Put the dirty plate in the fridge... <Close Possible actions> <Begin Goal> Clean the Kitchen <End Goal> <Begin Observation> You can see a fridge. Empty! You can see ... <End Observation> Paraphrase <Begin Inventory: > You are carrying... <End Inventory: > Natural Next action of the agent: Language P₃: Welcome to TextWorld! You find yourself in a messy house...What you can do is to close the fridge. Put the dirty plate in the fridge...Your goal is to clean the Kitchen. You can see a fridge....now,

You are carrying nothing., and your next action is to :

Environments

Baby Ai Text: An environment that requires exploration and understanding of the positions of objects

Text World Common sense: An environment that requires commonsense knowledge about the world.

Prompt overfitting protocol

Prompt Strategy

P₀: Possible actions of the agent: close the fridge, Put the dirty plate in the fridge ... Goal: Clean the Kitchen Observation: You can see a fridge. Empty! You can see ... Inventory: You are carrying Next action of the agent: switch P1: in order Goal: Clean the Kitchen Inventory: You are carrying ... Observation: You can see a fridge. Empty! You can see ... Possible actions of the agent: close the fridge and put the dirty Next action of the agent: P2: Riaid syntaxe <Begin Possible actions> close the fridge. Put the dirty plate in the fridge... <Close Possible actions> <Begin Goal> Clean the Kitchen <End Goal> <Begin Observation> You can see a fridge. Empty! You can see ... <End Observation> Paraphrase <Begin Inventory: > You are carrying... <End Inventory: > Natural Next action of the agent: Language P3: Welcome to TextWorld! You find yourself in a messy house...What you can do is to close the fridge. Put the dirty plate in the fridge...Your goal is to clean the Kitchen. You can see a fridge....now,

You are carrying nothing., and your next action is to :

Training & Evaluation Scenarios

EleutherAl/**gpt-neo**

An implementation of model parallel GPT-2 and GPT-3-style models using the mesh-tensorflow library.

A	26	⊙ 11	☆	8k	ų	961
	Contributors	Issues		Stars		Fork

-Zero shot evaluation -Train with one Strategy

and Evaluate with others -Train on All Strategy

ELAN-T5

0

Experimental results: prompt sensitivity

• Success Rate (SR): $ESR = \frac{n_e}{N}$

 P_3

Mean Episode Length

Metrics:

• RL boost performances

- But strong overfitting to the prompt
- Similar trend with GPT-neo

Experimental results: state representation in LLMs

$$Intra(P_i) = \frac{1}{|\Gamma|^2 - |\Gamma|} \sum_{\substack{(o,g) \in \Gamma \\ (o',g') \in \Gamma \setminus \{o,g\}}} cos\left(z_i^{o,g}, z_i^{o',g'}\right)$$

$$Inter(P_i, P_j) = \frac{1}{|\Gamma|} \sum_{(o,s) \in \Gamma} cos\left(z_i^{o,g}, z_j^{o,g}\right)$$

Models	7	78 <i>M</i>	780M			
Widdels	$Intra(P_i)$	$Inter(P_i, P_j)$	$Intra(P_i)$	$Inter(P_i, P_j)$		
Zero-	0.992	0.376 0.99		0.469		
shot	± 0.003 ± 0.019		± 0.001	± 0.462		
	0.991	0.382	0.997	0.458		
$_\sigma_0$	± 0.003	± 0.020	± 0.001	± 0.449		
T = = =	0.991	0.371	0.998	0.47		
$0_{0:3}$	± 0.003	± 0.020	± 0.001	± 0.461		

- Intra(P_i) ≃ 1 => different state (goal and observation) but same prompt
 - Inter(P_i, P_j) < 0.5 => same
 states with different prompt

=> Learned representations: encode prompt but not useful information (state)!

Experimental results: state representation in LLMs

contrastive loss enforcing:

Mitigating prompt overfitting: results

Contrastive $\sigma_0^{0:3}$: same homogeneity, better performance than $\sigma_{0:3}$

	$\sigma_{0:3}$	$\sigma_0^{0:3}$
78 M	0.77 ± 0.11 (3%)	0.92 ± 0.02 (97%)
780 M	0.80 ± 0.06 (4.7%)	0.86 ± 0.05 (91%)
1.3 B	0.66 ± 0.02 (99%)	0.76 ± 0.03 (98%)

Much better results in zero-shot prompt transfer!

• Prompt P₄ unseen during training

Visual instruction based planning

Goal: clean some tomato and put it on countertop.

Planner

Plan

- Go to fridge
- Open fridge
- Take tomato from fridge
- Close fridge
- Go to sinkbasin
- Clean tomato with sinkbasin
- Go to countertop
- Put tomato 1 in/on countertop

Visual instruction based planning: Alfworld

- Both image and detailed textual description of each image
- Successful attempts for using LLMs, either with RL or filtering relevant actions
- However, performances with VLMs from visual inputs are way less successful, e.g., limited performances in recent works RL4VLM [6]
 - EMMA [7] uses textual guidance, cumbersome and unrealistic requirement

[6] Y. Zhai, H. Bai, Z. Lin, J. Pan, S. Tong, Y. Zhou, A. Suhr, S. Xie, Y.LeCun, Y. Ma, S. Levine. Fine-tuning large vision-language models as decision-making agents via reinforcement learning. NeurIPS 2024.

[7] Y. Yang, T. Zhou, K. Li, D. Tao, L. Li, L. Shen, X. He, J. Jiang, Y. Shi. Embodied multi-modal agent trained by an Ilm from a parallel textworld. CVPR 2024.

VIPER: Visual Perception and Explainable Reasoning for Sequential Decision-Making

- Use text as intermediate for visual instruction-based planning
- Reasoning module fine tuned with Behavioral Coining (BC) and RL
- Intermediate text => rich monitoring potential

[9] VIPER: Visual Perception and Explainable Reasoning for Sequential Decision-Making S. Aissi, C. Grislain, M. Chetouani, O. Sigaud, L. Soulier, N. Thome.

VIPER architecture

- Perception: frozen VLM
- Reasoning: prediction in support of possible actions, as in GLAM [8] but ≠ RL4VLM [12]

VIPER training

Fine-tune the reasoning module (LLM) with sequential training strategy

- 1. Supervised fine-tuning : behavioural cloning
 - Using a rule-based expert
- **2. Online fine-tuning** : reinforcement learning (PPO)
 - Interaction with the environment and reward feedback

Experiments: AlfWorld

- Baselines
 - Oracle methods use textual observation (training and/or inference)
 - Zero-shot or fine-tuned VLM agents
- VIPER: +50 pts and reduces the gap with oracle methods

	Observation	Pick	Look	Clean	Heat	Cool	Pick2	Avg
AutoGen [*] [27]		0.92 (-)	0.83 (-)	0.74 (-)	0.78 (-)	0.86 (-)	0.41 (-)	0.77 (-)
$ReAct^*$ [30]	1	0.71(18.1)	0.28(23.7)	0.65(18.8)	0.62(18.2)	0.44(23.2)	0.35(25.5)	0.54(20.6)
DEPS* [25]	1	0.93 (-)	1.00 (-)	0.50 (-)	0.80 (-)	1.00 (-)	0.00 (-)	0.76 (-)
Reflexion* $[19]$		0.96(17.4)	$0.94\ (16.9)$	1.00(17.0)	0.81(19.4)	$0.83\ (21.6)$	0.88(21.6)	0.91 (18.7)
EMMA* [29]	$\not \rightarrow \textcircled{\bullet}$	0.71 (19.3)	0.88 (19.6)	0.94(17.5)	0.85~(19.6)	0.83(19.9)	0.67(22.4)	0.82(19.5)
Florence-2 [28]	۲	0.00(30.0)	0.06(28.5)	0.0(30.0)	0.0(30.0)	0.0(30.0)	0.0(30.0)	0.01 (29.7)
Idefics-2 $[13]$	۲	0.04(29.2)	0.06(28.2)	0.0(30.0)	0.0(30.0)	0.0(30.0)	0.0(30.0)	0.02(29.5)
MiniGPT-4* [36]	۲	0.04(29.0)	0.17(17.7)	0.0(30.0)	0.19(26.3)	0.17(26.7)	0.06(28.9)	0.16(26.9)
InstructBLIP* [4]	۲	0.50(21.5)	0.17(26.8)	0.26~(25.0)	0.23(27.2)	0.06(28.9)	0(30.0)	0.22(26.2)
RL4VLM* [33]	۲	0.47 (-)	0.14 (-)	0.10 (-)	0.14 (-)	0.18 (-)	0.18 (-)	0.21 (-)
VIPER	۲	0.80(13.1)	0.77(16.7)	0.77~(19.5)	0.92(14.3)	0.71~(20.4)	0.53(24.0)	0.75~(18.0)

Experiments: impact of BC/RL training

RL works for simple tasks, but need BC guidance on more complex ones

Failure analysis and monitoring

Goal: Heat some egg and put it on countertop

Description: The image shows a table with a variety of items on it, including an **apple** and other **objects**. In the [...]

Action: Take apple 1 from dining table 2

Perception error: missed egg

Failure analysis and monitoring

Goal: Your task is to: put some box on dresser

t=1

Current Observation: This is an animated image. In this image we can see a sofa. On the sofa there is a box and a paper. In the background there is wall.

Next Action: go to sofa1

t=5 Current Observation: In this image we can see a chair on the floor. On the right side of the image there is a table on which a lamp is placed. We can also see a cardboard box

background there is wall. Next Action: take box 1 from garbagecan 1

placed on the table. In the

t=10 Current Observation: This is an animated image. In this image we can see a monitor and a keyboard on the table.

Next Action: go to garbagecan 1

t=16

Current Observation: This is an animated image. In this image we can see a chair, bed, table, lamp and wall. At the bottom of the image there is a floor

Next Action: go to dresser 1

t=40

Current Observation: This is an animated image. In this image we can see a monitor and a keyboard on the table.

Next Action: go to garbagecan 1

t=50

Current Observation: This is an animated image. In this image we can see a chair, bed, table, lamp and wall. At the bottom of the image there is a floor

Next Action: go to dresser 1

Reasoning error: box detected

Perspective & future works

- Text as intermediate representation in instruction-based planning
 - Enhancing perception through the interaction with reasoning (example VQA)
 - Applying continual learning methodologies across diverse tasks to enable incremental knowledge acquisition