Driving through Generative
video Pretraining:

VaVIM-VaVAM

Matthieu Cord
Sorbonne Université
June 19, 2025
Joint work with the valeo.ai team:

a I"_'(l‘u‘ > s > arXiv:2502.15672

Computer Science > Computer Vision and Pattern Recognition

[Submitted on 21 Feb 2025]

VaViM and VaVAM: Autonomous Driving through Video Generative Modeling

Flarent Bartoccioni, Elias Ramzi, Victor Besnier, Shashanka Venkataramanan, Tuan-Hung Vu, Yihong Xu, Loick Chambon, Spyros Gi
Odabas, David Hurych, Renaud Marlet, Alexandre Boulch, Mickael Chen, Eloi Zablocki, Andrei Bursuc, Eduardo Valle, Matthieu Cord



http://valeo.ai

World Model

Mechanism

Driving world models work by predicting the future on

sensors’ streams, e.g., future frames in videos of cameras
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World Model

Mechanism

Driving world models generate those future data: they are

Generative Al models



http://drive.google.com/file/d/1quv2FXUdB5s-mj3iQ2ZVt319KrETgUkw/view
http://drive.google.com/file/d/1cDMCW4tSHtCXtVCOTwl_Jsp2Xboy62VZ/view

World Model

Purpose

A driving world model allows a driving agent to decide on

the best actions to reach the desired outcome
UniAD Failure Case



http://drive.google.com/file/d/1u84O0CLXQIzg69FQZIrlr7ub8pgD0VcZ/view
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VaVvIM / VavAM

Valeo Video Model / Valeo Video-Action Model VaViM iS our video

world model
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YouTube front-cam videos

e Discretizes video into text-

like “tokens”
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. y N e Predicts future with GPT-
: ‘ e Predicted tokens can be

decoded into video or

used per se for decisions




VaVIM in detail

Let's predict future video frames as if we were predicting

the next word on a phrase

Step 1. lay out the frames in sequence and cut them into patches
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Discrete Tokenization
From RGB images to a discrete sequence
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What’s used to train the video model

(*) VQ-VAE, LFQ, FSQ, etc...



Autoregressive generation
Overview




Autoregressive generation
Overview




Autoregressive generation
Overview




Learning the video model
Next-token prediction - teacher forcing supervision
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(*) GPT, LLaMA, DeepSeek, etc...



World Models

VaViM predicts and generates future scenarios
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http://drive.google.com/file/d/1--TwX7oPBEZ3djUb_bqVpofR-xEAQ1ql/view

World Models

Quality of generation scale with the model size

Example of long video generation, beyond training context length

VaViM-S (200M) VaViM-L (1B)
Pedestrian mistaken for a car, unrealistic scene generation Pedestrian generated, realistic scene generation
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Real F ; b e t
- - u g - L
'; i
o ; - 3 ; '

14


http://drive.google.com/file/d/1Ko05spAmLGmKwTuFWvgT0EKRDrn9Cqxm/view
http://drive.google.com/file/d/12wXrOAd02kRNBy-w4qz7fNFxWXMeqLqu/view

Limitations
VaViM-1

Limitation 1) ImageNet Tokenizer

» Cosmos Tokenizer (20M+ hours of diverse videos)

Limitation 2) Generation is slow: generating 4 frames = +10s

»> Reduce the number of tokens
» Change the AR sampling (MaskGit-style)

One frame is currently 18x32 = 576 tokens » 4 future frames =2304 tokens !!!



Reducing # of tokens
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Discrete Tokenization
From RGB images to a discrete sequence
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What’s used to train the video model

(*) VQ-VAE, LFQ, FSQ, etc...



1D tokenizer
Moving out from the grid
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[ Quantizationx* }

(with k << h*w)

TiTok: An Image is Worth 32 Tokens for Reconstruction and Generation (Yu et al, 2024)
FlexTok: Resampling Images into 1D Token Sequences of Flexible Length (Bachmann et al., 2025)
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1D tokenizer - discrete - 256 tokens
Well... be the judge

Example 1 - Reconstruction (L1 Error: 0.4769)
VAE Reconstructed Image Ours Reconstructed Image




1t change
Going Continuous

Val



1D Tokenizer - Continuous Tokenization
What if we remove the quantization layer
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1D tokenizer - continuous - 256 tokens
Works well !

Example 1 - Reconstruction (L1 Error: 0.0361)
Ours Reconstructed Image
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1D tokenizer - continuous - 32 tokens
Works well too!

Example 1 - Reconstruction (L1 Error: 0.1190)
VAE Reconstructed Image Ours Reconstructed Image
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1D tokenizer - continuous - 32 tokens
Results on driving data (huScenes)

# tokens MSE | SSiMt PSNR? rFID (dinov2-L)|

LLamaGen - VQGAN 256 0.0039 24.7291 0.8242 141.8907
Cosmos - FSQ 256 0.004 24.7684 0.8184 175.7658
Cosmos - continous 256 0.0013 29.7131 0.9058 67.7483
FlexTok - FSQ* 256 0.0136 19.1557 0.7289 523.2096
FlexTok - FSQ* KV 0.0191 17.7005 0.6778 557.3641
FlexTok - continuous* 256 0.0009 31.0313 0.9291 49.6797
FlexTok - continuous™ KV 0.0018 28.0202 0.9078 84.2266

(*) Ours Flextok-like




AR video model - Moving from discrete to continuous
How to train AR model with continuous tokens ?

Discrete:
Ouantized - Output = Softmax
Transformer - Transformer head dim = |vocabulary|
Categorical Continuous - Loss = cross-entropy[one-hot, categorical distrib]
Distribution LALAN Distribution
Continuous:
Causal Causal - Output = GMM (mixture of k d-dimensional diag-

Transformer Transformer

cov gaussian)

- Transformer head dim = 2*k*d + k
Lookup Table Lookup Embed via Linear = k *d means

) i - o - k*dstd
TokensinZ [s] [a] 1 fokens in R -k mixture weights

- Loss = NLL[GT vector, GMM distrib]

GIVT: Generative Infinite-Vocabulary Transformers (Tschannen et al., 2024)



AR video model - Moving from discrete to continuous
Inference - sampling of discrete token vs sampling of continuous vector

Discrete codebook + Softmax Continuous latents + GMM head
Distrib of next token = Distrib of next token =
probabilities over candidates mixture of gaussians (e.g., k=3)

voronoi cells

dl dl

* True next token

v
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Learning the video model - we don’t change many things
Discrete tokenizer, softmax, CE -> Continuous tokenizer, GMM, NLL
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(*) GPT, LLaMA, DeepSeek, etc...



2"d change
Patchify tokens

Val



Patchify

Reduce # of generation steps




Patchify

Reduce # of generation steps




Patchify

Reduce # of generation steps
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Patchify

Reduce # of generation steps
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Patchify

Reduce # of generation steps




Patchify

Reduce # of generation steps

Issue: if we generate 4 tokens at the same time, they are generated independently and are
not coherent



Patchification
Simple Patchify + Unpatchify

Issue: if we generate 4
tokens at the same time,

. . . - - . . - they are generated

- independently and are not
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(*) GPT, LLaMA, DeepSeek, etc...
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How to use the features
for VaViM to drive ?
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VaVIM lvaVAM At+1  A+2  A+3  At+4  At+s5 At+6
Complete Architecture sasaases ---

Action Decoder

Joint Attention

Action Encoder
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VaVAM in detail
VaVAM = VaViM + Action expert

"1':‘1-:'_‘ . At+]  At+2  A+3  At+4 A4 At+6
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Action Decoder

VaViM = => Action Transformer

“Turn Left” —»

Action Encoder

o At+1  At+2  Ar+3  At+4  At+5 At+6
W [% ]

Train an action

expert on VaViM’s
embeddings

The action expert
estimates the
agent’s decisions

Model:
Flow-matching
action expert
[NeurAD K. Black
et al. ]
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VaVAM in detail

VaVAM = VaViM + Action expert

VaVviM

A+

At+2  At+3  At+4 A5

At+6

Action Decoder

= => Action Transformer

A+
[xy]

At+2  A+3  Ar+4 A5

Action Encoder

At+6

Train an action
expert on VaViM’s
embeddings

The action expert
estimates the
agent’s decisions
exploiting the
temporal contexts
of multiple frames
that are crucial for
understanding
dynamic scenarios
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VaVAM in detail : :,,.. Yoo ccoboo ccodes ocoodes
VaVAM training 88
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(b) Joint Attention Masking

Video model kept frozen during the

VaViM —,=> Action Transformer e :
1 training of the action expert

Data and Training Strategy:
nuPlan nuScenes (standard driving

datasets), providing synchronized

: camera and ego-trajectory data,
&= SE0EEE 888 Es -« enabling supervised training of

B B2 A3 Bus Aus  Aue action models

[xyl]

Only front cam, 4s video clips at 2
FPS => 8 512x288 frames per cIip49



VaVAM experiment on NeuroNCAP

To evaluate safety-critical behavior beyond open-loop metrics, we use [NeuroNCAP], a
photorealistic, NeRF-based simulator supporting data-driven closed-loop evaluation. Unlike
synthetic carla or view-reprojection systems, NeuroNCAP produces novel views from real
data and inserts adversarial agents to mimic critical Euro NCAP scenarios: ego-lane

obstacles, frontal collisions, and cross-traffic.

Driving decisions are executed in simulation, with observations updated accordingly. The
ego-vehicle and the adversarial agents are initialized so that, under constant speeds and

steering angles, a collision would occur in 4 seconds.

Predicted trajectories are converted into low-level control commands (steering, throttle,

brake) via an LQR controller implemented within the NeuroNCAP simulator.
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VaVAM experiment on NeuroNCAP

A driving world model allows a driving agent to decide on

the best actions to reach the desired outcome
VaVAM
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http://drive.google.com/file/d/1QkpR8oLZwE0FwcM72t7qhVowMzjFT-Ts/view

VaVAM experiment on NeuroNCAP

VaVAM uses VaViM for end-to-end trajectory decision
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http://drive.google.com/file/d/139fHNa_vxfDBBw6gkh5TUO2gGFfxgEIQ/view

VaVAM experiment on NeuroNCAP

NeuroNCAP metrics: the collision rate (lower is better) and the NeuroNCAP Score(NNS) (higher is better)

which is derived from the collision rate and severity: zero collisions give a perfect score of 5.0, which is

lowered for more collisions or collisions at higher speeds
* Static scenarios, sensitive to annotation-dependent post-processing
T Side scenarios, sensitive to multiview-cameras
! Baseline reproduced by us

o o o NEURODNCAP SCORE T COLLISION RAT
MODEL PosT-PROC,

AVG, STAT.® FRONTAL Sipef AVG, STAT.® FRONTAL Sipef

Baselines — Tramed with hand-labeled annotations, 360° Yiew
2.65 4.72 .80 1.43 R Q.60 JOHL 0D 1O (KD
267 4.82 .85 1.32 6570 G000 0000 10000

0.73 0.8 (.10 1.26 B8.60 B7.80 9840 T9.60
(.66 047 0.04 1.45 92.50 96,20 99,60 a1.60

1.84 3.54 0.66 1.33 68.70 34.80 92.40 T8.80
2.08 3.58 1.18 148 61.10 31.20 T8.80 13.20
2.75 377 1.44 3.05 50.70 28.70 73.60 49.80

VAM — Trained on raw data, Front-cam only
2.62 313 2.67 2.07 52,70 47.20 50,00 680
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Conclusion

e End-to-end driving system that combines
generative video pretraining with action learning
from demonstrations

e VaVAM achieves strong closed-loop performance
and sets a new state of the art in safety-critical
scenario

e [uture directions include reward-based learning,
multi-camera inputs, and improved VaViM
tokenization

https://valeoai.github.io

e Main contributors:
Florent Bartoccioni
Elias Ramazi
Shashanka Venkataramanan
Eduardo Valle
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