Driving through Generative video Pretraining: VaVIM-VaVAM

Matthieu Cord Sorbonne Université June 19, 2025 Joint work with the <u>valeo.ai</u> team:

 $\exists r \times iv > cs > arXiv:2502.15672$

Computer Science > Computer Vision and Pattern Recognition

[Submitted on 21 Feb 2025]

VaViM and VaVAM: Autonomous Driving through Video Generative Modeling

Florent Bartoccioni, Elias Ramzi, Victor Besnier, Shashanka Venkataramanan, Tuan-Hung Vu, Yihong Xu, Loick Chambon, Spyros Gie Odabas, David Hurych, Renaud Marlet, Alexandre Boulch, Mickael Chen, Éloi Zablocki, Andrei Bursuc, Eduardo Valle, Matthieu Cord

Driving world models work by predicting the future on

sensors' streams, e.g., future frames in videos of cameras

Driving world models generate those future data: they are Generative AI models

A driving world model allows a driving agent to decide on the best actions to reach the desired outcome

UniAD Failure Case

VaVIM / VaVAM Valeo Video Model / Valeo Video-Action Model

VaViM is our video world model

- Trained on 1800+ hours of YouTube front-cam videos
- Discretizes video into textlike "tokens"
- Predicts future with GPTlike autoregression
- Predicted tokens can be decoded into video or used *per se* for decisions

Let's predict future video frames as if we were predicting the next word on a phrase

Step 1: lay out the frames in sequence and cut them into patches

Discrete Tokenization

From RGB images to a discrete sequence

Autoregressive generation

Autoregressive generation

Autoregressive generation Overview

Learning the video model

Next-token prediction - teacher forcing supervision

(*) GPT, LLaMA, DeepSeek, etc...

World Models

VaViM predicts and generates future scenarios

World Models Quality of generation scale with the model size

Example of long video generation, beyond training context length

VaViM-S (200M) Pedestrian mistaken for a car, unrealistic scene generation

VaViM-L (1B) Pedestrian generated, realistic scene generation

Limitations VaViM-1

Limitation 1) ImageNet Tokenizer

→ Cosmos Tokenizer (20M+ hours of diverse videos)

Limitation 2) Generation is slow: generating 4 frames = +10s

→ Reduce the number of tokens
→ Change the AR sampling (MaskGit-style)

One frame is currently 18x32 = 576 tokens → 4 future frames = 2304 tokens !!!

Reducing # of tokens

Discrete Tokenization

From RGB images to a discrete sequence

1D tokenizer Moving out from the grid

1D tokenizer - discrete - 256 tokens Well... be the judge

1st change Going Continuous

1D Tokenizer - Continuous Tokenization

What if we remove the quantization layer

1D tokenizer - continuous - 256 tokens Works well !

1D tokenizer - continuous - 32 tokens Works well too !

1D tokenizer - continuous - 32 tokens

Results on driving data (nuScenes)

	# tokens	MSE↓	SSIM↑	PSNR ↑	rFID (dinov2-L)↓	
LLamaGen - VQGAN	256	0.0039	24.7291	0.8242	141.8907	
Cosmos - FSQ	256	<u>0.004</u>	24.7684	0.8184	175.7658	
Cosmos - continous	256	0.0013	<u>29.7131</u>	0.9058	<u>67.7483</u>	
FlexTok - FSQ*	256	0.0136	19.1557	0.7289	523.2096	
FlexTok - FSQ*	32	0.0191	17.7005	0.6778	557.3641	
FlexTok - continuous*	256	0.0009	31.0313	0.9291	49.6797	
FlexTok - continuous*	32	0.0018	28.0202	<u>0.9078</u>	84.2266	

AR video model - Moving from discrete to continuous

How to train AR model with continuous tokens?

Discrete:

- Output = Softmax
- Transformer head dim = |vocabulary|
- Loss = cross-entropy[one-hot, categorical distrib]

Continuous:

- Output = GMM (mixture of k d-dimensional diagcov gaussian)
- Transformer head dim = 2*k*d + k
 - k * d means
 - k*dstd
 - k mixture weights
- Loss = NLL[GT vector, GMM distrib]

AR video model - Moving from discrete to continuous

Inference - sampling of discrete token vs sampling of continuous vector

Discrete codebook + Softmax Distrib of next token = probabilities over candidates voronoi cells Continuous latents + GMM head Distrib of next token = mixture of gaussians (e.g., k=3)

Learning the video model - we don't change many things

Discrete tokenizer, softmax, CE -> Continuous tokenizer, GMM, NLL

2nd change Patchify tokens

Example with 2x2 patch

Example with 2x2 patch

Issue: if we generate 4 tokens at the same time, they are generated independently and are not coherent

Patchification Simple Patchify + Unpatchify

Issue: if we generate 4 tokens at the same time, they are generated independently and are not coherent

Patch embeddings [h*w / p², d]

> Input Tokens [h*w, d]

Input Video

How to use the features for VaViM to drive ?

/aVIM / VaVAM Complete Architecture	at+1 at+2 at+3 at+4 at+5 at+6 Action Decoder			
FFN	FFN			
Joint Attention				
	Action Encoder			
Tokenizer Tokenizer	Action Encoder a _{t+1} a _{t+2} a _{t+3} a _{t+4} a _{t+5} a _{t+6} [x, y]			

VaVAM in detail VaVAM = VaViM + Action expert

Train an action expert on VaViM's embeddings

The action expert estimates the agent's decisions

Model: Flow-matching action expert [NeurAD K. Black et al.]

VaVAM in detail VaVAM = VaViM + Action expert

Train an action expert on VaViM's embeddings

The action expert estimates the agent's decisions exploiting the temporal contexts of multiple frames that are crucial for understanding dynamic scenarios

VaVAM in detail VaVAM training

Video model kept frozen during the training of the action expert

Data and Training Strategy: nuPlan nuScenes (standard driving datasets), providing synchronized camera and ego-trajectory data, enabling supervised training of action models

Only front cam, 4s video clips at 2 FPS => 8 512×288 frames per clip $_{\Delta9}$

VaVAM experiment on NeuroNCAP

To evaluate safety-critical behavior beyond open-loop metrics, we use [NeuroNCAP], a photorealistic, NeRF-based simulator supporting data-driven closed-loop evaluation. Unlike synthetic carla or view-reprojection systems, NeuroNCAP produces novel views from real data and inserts adversarial agents to mimic critical Euro NCAP scenarios: ego-lane obstacles, frontal collisions, and cross-traffic.

Driving decisions are executed in simulation, with observations updated accordingly. The ego-vehicle and the adversarial agents are initialized so that, under constant speeds and steering angles, a collision would occur in 4 seconds.

Predicted trajectories are converted into low-level control commands (steering, throttle, brake) via an LQR controller implemented within the NeuroNCAP simulator.

A driving world model allows a driving agent to decide on the best actions to reach the desired outcome

VaVAM

VaVAM experiment on NeuroNCAP

VaVAM uses VaViM for end-to-end trajectory decision

VaVAM experiment on NeuroNCAP

NeuroNCAP metrics: the collision rate (lower is better) and the NeuroNCAP Score(NNS) (higher is better) which is derived from the collision rate and severity: zero collisions give a perfect score of 5.0, which is

lowered for more collisions or collisions at higher speeds

- * Static scenarios, sensitive to annotation-dependent post-processing
- [†] Side scenarios, sensitive to multiview-cameras

[‡] Baseline reproduced by us

MODEL	Post-proc.	NEURONCAP SCORE ↑				Collision rate (%) \downarrow					
		Avg.	Stat.*	FRONTAL	Side [†]	AVG.	STAT.*	FRONTAL	Side [†]		
Baselines — Trained with hand-labeled annotations, 360° View											
BASE-U BASE-V	N/A N/A	2.65 2.67	4.72 4.82	1.80 1.85	1.43 1.32	69.90 68.70	9.60 6.00	100.00 100.00	100.00 100.00		
UniAD VAD	× ×	0.73 0.66	0.84 0.47	0.10 0.04	1.26 1.45	88.60 92.50	87.80 96.20	98.40 99.60	79.60 81.60		
UniAD UniAD [‡] VAD	\$ \$	1.84 2.08 2.75	3.54 3.58 3.77	0.66 1.18 1.44	1.33 1.48 3.05	68.70 61.10 50.70	34.80 31.20 28.70	92.40 78.80 73.60	78.80 73.20 49.80		
VAM — Trained on raw data, Front-cam only											
VAM	×	2.62	3.13	2.67	2.07	52.70	47.20	50.00	60.80		

Conclusion

- End-to-end driving system that combines generative video pretraining with action learning from demonstrations
- VaVAM achieves strong closed-loop performance and sets a new state of the art in safety-critical scenario
- Future directions include reward-based learning, multi-camera inputs, and **improved VaViM** tokenization

https://valeoai.github.io

- Main contributors:
 - Florent Bartoccioni Elias Ramzi Shashanka Venkataramanan Eduardo Valle

