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Markov Decision Process (MDP) : (S, cfl, T, :R,)

Obijective in RL: maximize Z:ito yt—t(). r;
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Our motivation:
proper combination MB/MF in RL

Critical in real robotics applications

* Interactions costly, complex, harmful
* Need high frequency control




Model-based RL methos rely on:
* Learning a world (dynamical) model f(s¢, az) = Sgrq1 0 P(S¢41 1St at)
* Control through f(s¢, a;) to choose actions

D = {(st, at, St+1)}

Append

Controller

MPC [2]

Random

(St» ag, St+1)

actions
on D

[1]1 K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful of trials using probabilistic dynamics models. NeurlPS 201 8.




Cross-Entropy Method

Goal
Agent

Main CEM hyper-parameters:

* Number of iterations [
* Population size P
e Horizon H

[3] R.Y. Rubinstein, D.P. Kroese. The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning, Springer-Verlag,

New York, 2004.
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Model-based methods need large H, P and |

Inference time = f(H,P,1) 1 1

Goal




Dyna style RL (LOOP [4]) Hybrid RL (TD-MPC [5])
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[4] Harshit Sikchi, Wenxuan Zhou, and David Held. Learning off-policy with online planning. CoRL 2022.
[5] Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive control. ICML, 2022.




Dyna style RL (LOOP [4]) Hybrid RL (TD-MPC [5]) PhIHP (Ours)
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[4] Harshit Sikchi, Wenxuan Zhou, and David Held. Learning off-policy with online planning. CoRL 2022.
[5] Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive control. ICML, 2022.
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(a) Learn a physics-informed model# (b) Learn an actor/critic offline (c) Behaviour at inference time
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Hybrid TD3/MPC Control

Hybrid model =  Learning through imagination
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Physics:
An approximate model described as ODE [6]
Learning residual + physical parameters

Training Strategy:
0,
—-
ad D .
(¢t t41) (s, a; \@_ a8 = (F» + F")(st,av) = ODE -§t—|—1

\ P At le=v Solver
F

Dtrain >
\\_/ 9
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e

r

Loss = 2l f (s, a)) = sl + AF  sa  f(s,a) = (Fa+E) (s, a;)

[6] Yuan Yin, Vincent Le Guen, Jeremie Dona, Emmanuel de Bézenac, Ibrahim Ayed, Nicolas Thome, and Patrick Gallinari.
“Augmenting physical models with deep networks for complex dynamics forecasting.” ICLR, 2021.




* Combine Ay (policy) and Argndom

* Trajectory score
Physics Model Policy /Q-function

long-term reward
local solution CEM

Good physics-informed model = good policy

Good policy: Infformative candidates A,

= reduce population size large P and iterations large I in CEM

Good Q-function: e ees e ses e nsaenaan e,
= reduce the planning horizon H : 0 Time efficienc :
. I iciency

Data

0 Asymptotic performance




Pendulum CartPole Acrobot
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x1000 steps Figure 1: PhIHP includes a Physics-Informed

—— PhIHP (ours) — TDMPC — TD3 . . . .
] ) model and hybrid planning for efficient policy
(a) Learning curves, the x-axis uses a symlog scale. learning in RL. PhIHP improves the compro-

Figure 3: Comparison of PhIHP vs baselines aggregated on 6 control tasks (10 runs). a) PhIHP shows mise over state-of-the-art methods, model-
excellent sample efficiency and better asymptotic performance. free TD3 and hybl'ld TD-MPC, between sam-

i ple efficiency, time efficiency, and perfor-

mance. Results averaged over 6 tasks (Tow-
ers et al., 2023).




Motivation:
Extending PhiP to directly learn on robotic platforms

Main challenge:
inference delay in embedded devices: d steps

b) Inference delay
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At given, HP : Planning Horizon setup for desired performances
* Compute inference time T;:
Measure the inference time on the robot.

* Calculate the relative delay in timesteps:

T.
d= A_tl: where At is the timestep duration.

* Define an execution horizon H¢ ; d < H¢ < HP:

Set Heyy, = int () + 1.

* Apply n-step MPC:
Select the first H® actions from the optimized plan.
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* Jointly learning environment model + controller
onD

real*

* Periodically refine the policy through

imagination on D, + D,
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* Approximate model: double pendulum

* Fine-tuning physical parameters

* Learning residual friction and cable effects
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Robot frequency : At = 20ms

Agent frequency : T; = 60ms
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Model Prediction Accuracy:

RT-HCP provides the most accurate
trajectory predictions.

TD-MPC exhibits the largest
deviations over time.

PETS fails to complete the swing-up
task, despite its improved
predictive accuracy.

Pendulum angle (rad)

Rotor angle (rad)

Pendulum Angle

Rotor Angle

—— ground truth —=—- RTHCP -=- TD-MPC  --- PETS -

T
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[7] Z. El Asri, O. Sigaud, N. Thome. Physics-Informed Model and Hybrid Planning for Efficient Dyna-Style Reinforcement Learning. RLC 2024.

PhIHP [7] improves the trade-off between sample efficiency,
inference time, and asymptotic performance by combining physics-
informed models and hybrid planning.

RT-HCP [8] extends this idea to real robotic systems, addressing
inference delays.

Together, these methods bring us closer to deployable RL on physical
robots, learning in real time, directly from interaction.

[8] Z. El Asri, . Laiche, C. Rambour, O. Sigaud, N. Thome. RT-HCP: Dealing with Inference Delays and Sample Efficiency to Learn Directly on Robotic Platforms.

IROS 2025.



https://rl-conference.cc/

Thank you for your attention
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1.Start with the normal distribution
N (1,0?)
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2. Generate N vectors with this
distribution
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3. Evaluate each vector and select a
proportion p of the best ones. These
vectors are represented in grey

A

4. Compute the mean and standard

deviation of the best vectors

o ®®
9] ¢

;

5. Add a noise term to the standard

deviation, to avoid premature

convergence to a local optimum

6. This mean and standard deviation
define the normal distribution of
next iteration
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Figure 6: A data-driven model still poorly predicts the next states even when its asymptotic per-
formance matches that of the physics-informed model. Figure obtained with 10 episodes of model

training on Pendulum swingup.
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Figure 5: Comparison of PhIHP and its variants on the 3 main metrics. The figures illustrate the
aggregated results of running all algorithms on 6 classic control tasks. Histograms and bars represent

mean and std. over 10 runs.
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