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Learning controllers with reinforcement learning (RL)

Model-Free RL                  Vs                Model-Based RL

Objective in RL:  maximize σ𝒕=𝒕𝟎

∞ 𝜸𝒕−𝒕𝟎 . 𝒓𝒕

Markov Decision Process (MDP) :  𝓢, 𝓐, 𝓣, 𝓡
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Model-Free RL Model-Based RL

Model-based vs model-free RL

Sample efficiency

Time efficiency

Sample efficiency

Time efficiency

Asymptotic performanceAsymptotic performance

Sample efficiency

Time efficiency

Asymptotic performance

GOAL

Sample efficiency

Asymptotic performance

Time efficiency

Critical in real robotics applications

• Interactions costly, complex, harmful

• Need high frequency control

Our motivation: 

proper combination MB/MF in RL
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Model-based RL, e.g., PETS (2018) [1] 

Model-based RL methos rely on:

• Learning a world (dynamical) model 𝑓 𝑠𝑡, 𝑎𝑡 = 𝑠𝑡+1 𝑜𝑟 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)

• Control through 𝑓 𝑠𝑡, 𝑎𝑡 to choose actions 

[1] K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful of trials using probabilistic dynamics models. NeurIPS 2018.

Random

actions

D = { 𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1 }

Controller

MPC [2]
Fit f(s,a)

Append 

𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1

on D
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CEM for sequential decision making [3]

[3] R.Y. Rubinstein, D.P. Kroese. The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning, Springer-Verlag, 

New York, 2004.

Cross-Entropy Method

Main CEM hyper-parameters:

• Number of iterations 𝐼
• Population size 𝑃
• Horizon 𝐻 

Model-based methods need large H, 𝑃 𝑎𝑛𝑑 𝐼 

Inference time = f(H, P, I) ↑ ↑
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Hybrid MB/MF methods 

Policy/ValueModel

Act

Data

Sample efficiency

Time efficiency

Asymptotic performance

Policy/ValueModel

Act

Data

Planning

Sample efficiency

Time efficiency

Asymptotic performance

Dyna style RL (LOOP [4]) Hybrid RL (TD-MPC [5])

[4] Harshit Sikchi, Wenxuan Zhou, and David Held. Learning off-policy with online planning. CoRL 2022.

[5] Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive control. ICML, 2022.
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Physics-Informed Model and Hybrid Planning (PhIHP)

Policy/ValueModel

Act

Data

Sample efficiency

Time efficiency

Asymptotic performance

Policy/ValueModel

Act

Data

Planning

Sample efficiency

Time efficiency

Asymptotic performance

Policy/ValueModel

Act

Data

CEM

Physics

Sample efficiency

Time efficiency

Asymptotic performance

Dyna style RL (LOOP [4]) Hybrid RL (TD-MPC [5]) PhIHP (Ours)

[4] Harshit Sikchi, Wenxuan Zhou, and David Held. Learning off-policy with online planning. CoRL 2022.

[5] Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive control. ICML, 2022.
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PhIHP pipeline

Sample efficiency Sample efficiency

Time efficiency

Sample efficiency

Time efficiency

Asymptotic performance

Reduced bias

Hybrid model Learning through imagination Hybrid TD3/MPC Control
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PhIHP: learning a hybrid model

Training Strategy:

ODE 

Solver

Loss = σ𝑖 𝑓 𝑠𝑖 , 𝑎𝑖 − 𝑠𝑖
′ 2 + 𝜆 𝐹𝑎 s.a 𝑓 𝑠𝑖 , 𝑎𝑖 = (𝐹𝑎+𝐹𝑝) 𝑠𝑖 , 𝑎𝑖

Physics:
 An approximate model described as ODE [6] 

 Learning residual + physical parameters

[6] Yuan Yin, Vincent Le Guen, Jeremie Dona, Emmanuel de Bézenac, Ibrahim Ayed, Nicolas Thome, and Patrick Gallinari. 

 “Augmenting physical models with deep networks for complex dynamics forecasting.” ICLR, 2021.
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PhIHP: hybrid controller

local solution
long-term reward

Good physics-informed model ⇒ good policy 

Good policy: Informative candidates 𝐴𝜋, 

  ⇒ reduce population size large 𝑃 and iterations large 𝐼 in CEM

Good Q-function: 

  ⇒ reduce the planning horizon H 

Policy/Q-functionModel

Act

Data

CEM

Physics

𝐴𝜋

• Combine 𝐴𝜋 (policy) and 𝐴𝑟𝑎𝑛𝑑𝑜𝑚

• Trajectory score

Time efficiency

Asymptotic performance
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PhIHP: Experiments

Pendulum AcrobotCartPole

Approximate physics: 

no friction
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PhIHP: Results
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Real-Time Hybrid control with Physics (RT-HCP)

Motivation: 

Extending PhiP to directly learn on robotic platforms

Main challenge:

inference delay in embedded devices: d steps 

Inference

delay
𝑑. ∆𝑡

Environment

∆𝑡
Action

state
𝑠𝑡

𝑎𝑡

𝑠0 … 𝑠𝑑 … 𝑠2𝑑 … 𝑠𝑑.𝑡

𝑎0 𝑎1 𝑎2 𝑎𝑡

Env state

Env action

b) Inference delay
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Methodology: how many actions to send?

∆𝑡 given, 𝐻𝑝 : Planning Horizon setup for desired performances

• Compute inference time 𝑇𝑖: 

Measure the inference time on the robot.

• Calculate the relative delay in timesteps:

 𝑑 =
𝑇𝑖

∆𝑡
where ∆𝑡 is the timestep duration.

• Define an execution horizon 𝑯𝒆 ; 𝑑 ≤ 𝐻𝑒 ≤ 𝐻𝑝: 

Set 𝑯𝒎𝒊𝒏
𝒆 = 𝒊𝒏𝒕

𝑻𝒊

∆𝒕
+ 𝟏. 

• Apply n-step MPC: 

Select the first 𝐻𝑒 actions from the optimized plan.
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Extended Action Delay Wrapper

𝑎𝑑.𝑡−(𝑑−1)

…
𝑎𝑑.𝑡−1

𝑎𝑑.𝑡−𝑑

𝑠𝑑.𝑡−(𝑑−1)

𝑎𝑑.𝑡−1

𝑠𝑑.𝑡

Augmented State

Action 

buffer

Current state

𝑠𝑑.𝑡

𝑠′𝑡

𝑎′𝑡

𝑠𝑑.𝑡−(𝑑−1)

…
𝑠𝑑.𝑡−1

Hidden-states 

bufferInference

𝑑. ∆𝑡
∆𝑡

∆𝑡

𝑎𝑑.𝑡

…

𝑎𝑑.𝑡+(𝑑−1)

Augmented State 𝑠′𝑡 

𝑠𝑑.𝑡−(𝑑−1)…𝑠𝑑.𝑡−1 𝑠𝑑.𝑡

𝑎𝑑.𝑡 𝑎𝑑.𝑡+1 … 𝑎𝑑.𝑡+(𝑑−1)

𝑠′𝑡

𝑠𝑑.𝑡+1 … 𝑠𝑑.𝑡+(𝑑−1) 𝑠𝑑.(𝑡+1)

𝑎𝑑.(𝑡+1) … 𝑎𝑑.(𝑡+1)+(𝑑−1)

𝑠′𝑡+1

𝐷𝑟𝑒𝑎𝑙

1) Collect trajectories using d-step MPC to train agent under inference delay

2) Concatenate augmented states to restore the original MDP

Method

Delay-MDP

D-step MPC
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Real-Time Hybrid control with Physics (RT-HCP)

• Jointly learning environment model + controller 

on Dreal.

• Periodically refine the policy through 

imagination on Dreal + Dim
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RT-HCP: Experiments & results

𝛽

α

Base

Pendulum

Arm

Encoder cable

Real Furuta pendulum

• Approximate model: double pendulum

• Fine-tuning physical parameters

• Learning residual friction and cable effects

Robot frequency : ∆𝑡 = 20ms

Agent frequency : 𝑇𝑖 = 60ms
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RT-HCP: Experiments & results

RT-HCP RT-TDMPC TD3 RT-PETS

60k steps

23 minutes

100k steps

35 minutes

160k steps

58 minutes
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RT-HCP: Experiments & results

Model Prediction Accuracy:

• RT-HCP provides the most accurate 

trajectory predictions.

• TD-MPC exhibits the largest 

deviations over time.

• PETS fails to complete the swing-up 

task, despite its improved 

predictive accuracy.
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Conclusion

PhIHP [7] improves the trade-off between sample efficiency, 

inference time, and asymptotic performance by combining physics-

informed models and hybrid planning. 

RT-HCP [8] extends this idea to real robotic systems, addressing

inference delays. 

Together, these methods bring us closer to deployable RL on physical

robots, learning in real time, directly from interaction. 

[7] Z. El Asri, O. Sigaud, N. Thome.  Physics-Informed Model and Hybrid Planning for Efficient Dyna-Style Reinforcement Learning. RLC 2024.

[8] Z. El Asri, I. Laiche, C. Rambour, O. Sigaud, N. Thome. RT-HCP: Dealing with Inference Delays and Sample Efficiency to Learn Directly on Robotic Platforms. 

IROS 2025.

https://rl-conference.cc/


Thank you for your attention



Appendix
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Reminder: Cross-Entropy Method (CEM)

Marin, and Sigaud, O. Towards fast and adaptive optimal control policies for robots: A direct policy search approach, Robotica 2012



The quality of the physics-informed model
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Ablation study – Impact of learning through imagination & hybrid planning 
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PhIHP

PhIHP w/o “imagination”                              PhIHP w/o “imagination and physics”

PhIHP w/o “policy”                                       PhIHP w/o “policy and physics”
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