

Hybrid, Real-Time Model-Based Reinforcement **Policy Learning**

Zakariae El Asri

[RLC 2024] Physics-Informed Model and Hybrid Planning for Efficient Dyna-Style Reinforcement Learning.

Zakariae El Asri Olivier Sigaud Nicolas Thome

Sorbonne Université, CNRS, ISIR, Paris, France

[IROS 2025] RT-HCP: Dealing with Inference Delays and Sample Efficiency to Learn Directly on Robotic Platforms.

Zakariae El AsriIbrahim LaicheClément RambourOlivier SigaudNicolas ThomeSorbonne Université, CNRS, ISIR, Paris, France

Learning controllers with reinforcement learning (RL)

Markov Decision Process (MDP): $(\mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R})$

Objective in RL: maximize $\sum_{t=t_0}^{\infty} \gamma^{t-t_0} r_t$

Model-Free RL

Vs

Model-Based RL

Model-based vs model-free RL

Model-Based RL

Sample efficiency

Time efficiency

Asymptotic performance

- Interactions costly, complex, harmful
- Need high frequency control

Our motivation:

proper combination MB/MF in RL

Model-based RL, e.g., PETS (2018) [1]

Model-based RL methos rely on:

- Learning a world (dynamical) model $f(s_t, a_t) = s_{t+1}$ or $p(s_{t+1} | s_t, a_t)$
- Control through $f(s_t, a_t)$ to choose actions

CEM for sequential decision making [3]

Cross-Entropy Method

Main CEM hyper-parameters:

- Number of iterations I
- Population size P
- Horizon *H*

Model-based methods need large H, P and I

Inference time = $f(H, P, I) \uparrow \uparrow$

[3] R.Y. Rubinstein, D.P. Kroese. The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning, Springer-Verlag, New York, 2004.

Hybrid MB/MF methods

[4] Harshit Sikchi, Wenxuan Zhou, and David Held. Learning off-policy with online planning. CoRL 2022.[5] Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive control. ICML, 2022.

[4] Harshit Sikchi, Wenxuan Zhou, and David Held. Learning off-policy with online planning. CoRL 2022.[5] Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive control. ICML, 2022.

PhIHP pipeline

PhIHP: learning a hybrid model

Physics:

An approximate model described as ODE [6] Learning residual + physical parameters

Training Strategy:

Loss =
$$\sum_{i} ||f(s_i, a_i) - s'_i||^2 + \lambda ||F_a||$$
 s.a $f(s_i, a_i) = (F_a + F_p)(s_i, a_i)$

[6] Yuan Yin, Vincent Le Guen, Jeremie Dona, Emmanuel de Bézenac, Ibrahim Ayed, Nicolas Thome, and Patrick Gallinari. "Augmenting physical models with deep networks for complex dynamics forecasting." ICLR, 2021.

PhIHP: hybrid controller

Approximate physics: **no friction**

PhIHP: Results

(a) Learning curves, the x-axis uses a symlog scale.

Figure 3: Comparison of PhIHP vs baselines aggregated on 6 control tasks (10 runs). a) PhIHP shows excellent sample efficiency and better asymptotic performance.

Figure 1: PhIHP includes a Physics-Informed model and hybrid planning for efficient policy learning in RL. PhIHP improves the compromise over state-of-the-art methods, modelfree TD3 and hybrid TD-MPC, between sample efficiency, time efficiency, and performance. Results averaged over 6 tasks (Towers et al., 2023).

Real-Time Hybrid control with Physics (RT-HCP)

b) Inference delay

Motivation:

Extending PhiP to directly learn on robotic platforms

Main challenge:

inference delay in embedded devices: d steps

Methodology: how many actions to send?

- Δt given, H^p : Planning Horizon setup for desired performances
- Compute inference time T_i :

Measure the inference time on the robot.

- Calculate the relative delay in timesteps: $d = \frac{T_i}{\Delta t}$ where Δt is the timestep duration.
- Define an execution horizon H^e ; $d \le H^e \le H^p$: Set $H^e_{min} = int\left(\frac{T_i}{\Delta t}\right) + 1$.

• Apply n-step MPC: Select the first H^e actions from the optimized plan.

Real-Time Hybrid control with Physics (RT-HCP)

- Jointly learning environment model + controller on D_{real}.
- Periodically refine the policy through imagination on $D_{real} + D_{im}$

RT-HCP: Experiments & results

Real Furuta pendulum

- Approximate model: double pendulum
- Fine-tuning physical parameters
- Learning residual friction and cable effects

Robot frequency : $\Delta t = 20$ ms Agent frequency : $T_i = 60$ ms

RT-HCP: Experiments & results				
	RT-HCP	RT-TDMPC	TD3	RT-PETS
60k steps 23 minutes				
100k steps 35 minutes				
160k steps 58 minutes				

RT-HCP: Experiments & results

Model Prediction Accuracy:

- RT-HCP provides the most accurate trajectory predictions.
- TD-MPC exhibits the largest deviations over time.
- PETS fails to complete the swing-up task, despite its improved predictive accuracy.

PhIHP [7] improves the trade-off between sample efficiency, inference time, and asymptotic performance by combining physics-informed models and hybrid planning.

RT-HCP [8] extends this idea to real robotic systems, addressing inference delays.

Together, these methods bring us closer to deployable RL on physical robots, learning in real time, directly from interaction.

[7] Z. El Asri, O. Sigaud, N. Thome. Physics-Informed Model and Hybrid Planning for Efficient Dyna-Style Reinforcement Learning. RLC 2024.

[8] Z. El Asri, I. Laiche, C. Rambour, O. Sigaud, N. Thome. RT-HCP: Dealing with Inference Delays and Sample Efficiency to Learn Directly on Robotic Platforms. IROS 2025.

Thank you for your attention

Appendix

Reminder: Cross-Entropy Method (CEM)

The quality of the physics-informed model

Figure 6: A data-driven model still poorly predicts the next states even when its asymptotic performance matches that of the physics-informed model. Figure obtained with 10 episodes of model training on Pendulum swingup.

Ablation study – Impact of learning through imagination & hybrid planning

Figure 5: Comparison of PhIHP and its variants on the 3 main metrics. The figures illustrate the aggregated results of running all algorithms on 6 classic control tasks. Histograms and bars represent mean and std. over 10 runs.