

User-aware Personalization in Human-Robot Interactions via Multimodal Large Language Models (MLLMs)

Rahimi, H., Bahaj, A., Abrini, M., Khoramshahi, M., Ghogho, M., & Chetouani, M. (2025). User-vlm 360: Personalized vision language models with user-aware tuning for social human-robot interactions. arXiv preprint arXiv:2502.10636.

Hamed Rahimi

June 2025

Personalization in HRI

Adapting robots' behavior, appearance, and interaction style to meet the unique needs, preferences, and characteristics of individual users.

Key Dimensions:

- User Modeling: Learning about user preferences, abilities, and behavior.
- Adaptive Interaction: Modifying dialogue, gestures, and tasks dynamically.
- Long-Term Engagement: Building familiarity and trust over time.
- **Context Awareness:** Using environmental and situational cues for tailoring interactions.

Benefits:

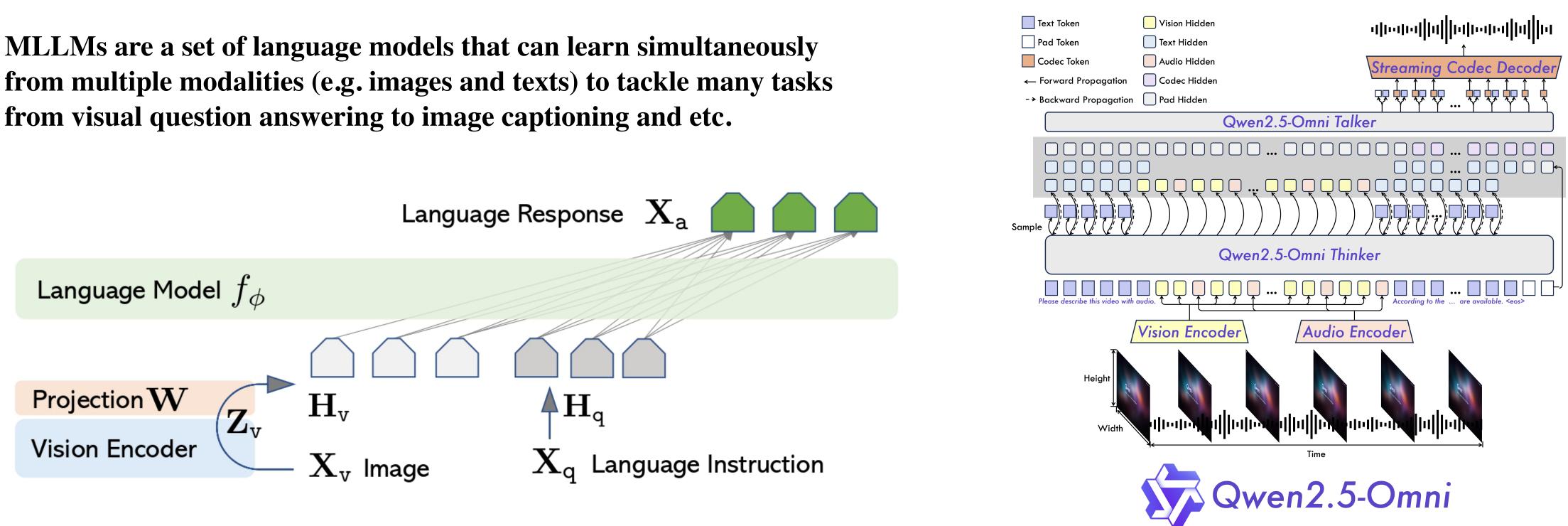
- ✓ Increases user satisfaction & trust
- **V** Improves task efficiency
- Supports accessibility & inclusivity
- **V** Enhances emotional connection

Examples:

- Social robots adjusting tone based on mood detection
- Assistive robots adapting routines for elderly individuals
- Educational robots personalizing teaching strategies for students

Irfan, Bahar, et al. "Personalization in long-term human-robot interaction." 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE, 2019.

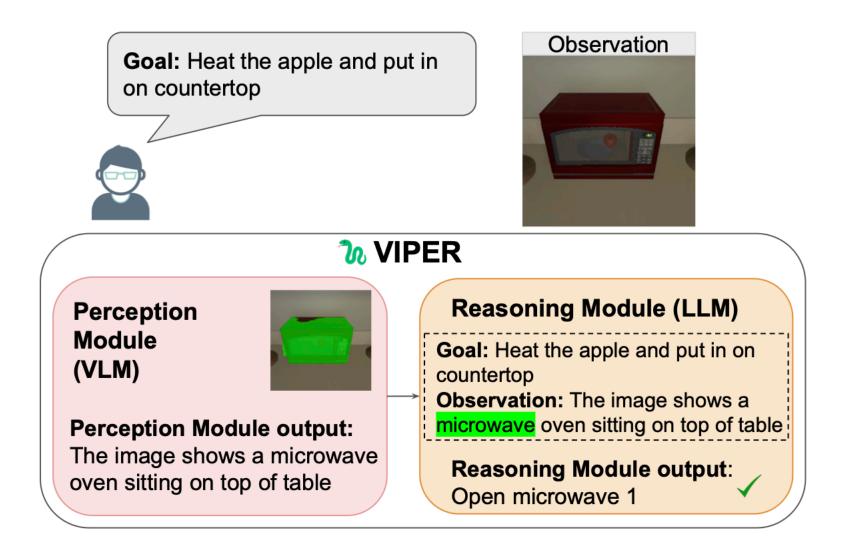
from visual question answering to image captioning and etc.



Liu, Haotian, et al. "Visual instruction tuning." Advances in neural information processing systems 36 (2023): 34892-34916. Xu J, Guo Z, He J, Hu H, He T, Bai S, Chen K, Wang J, Fan Y, Dang K, Zhang B. Qwen2. 5-omni technical report. arXiv preprint arXiv:2503.20215. 2025 Mar 26.

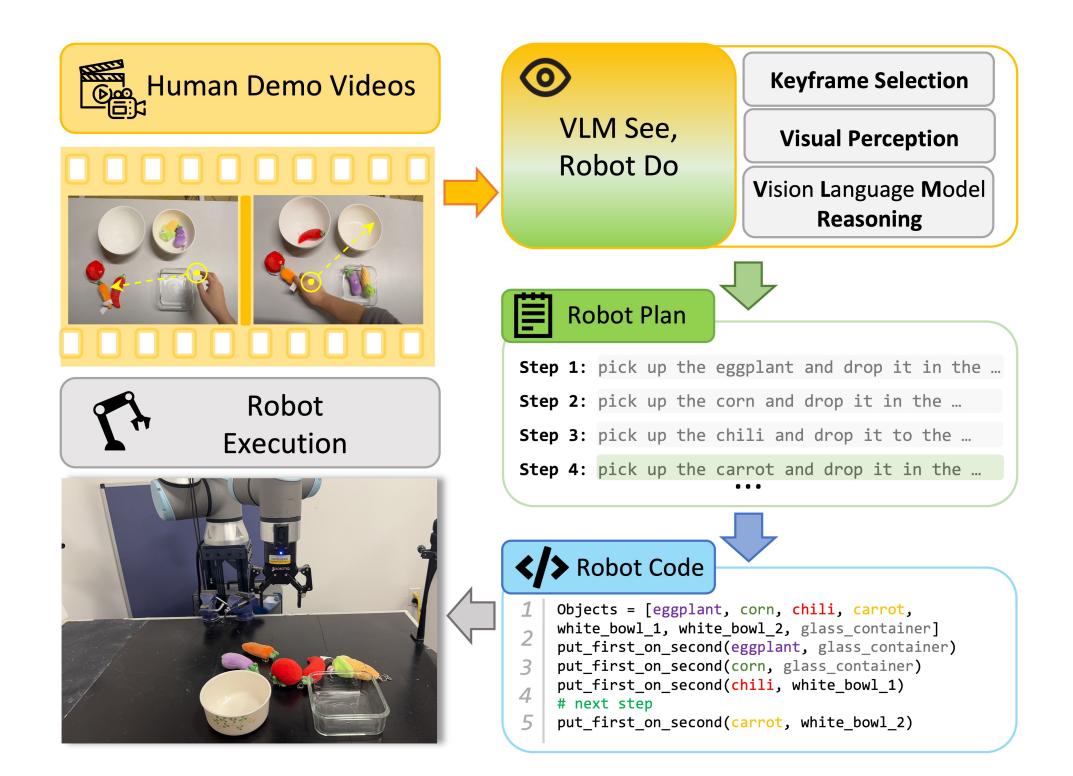
Multimodal Large Language Models

The integration of vision-language models into robotic systems constitutes a significant advancement in enabling machines to interact with their surroundings in a more intuitive manner.



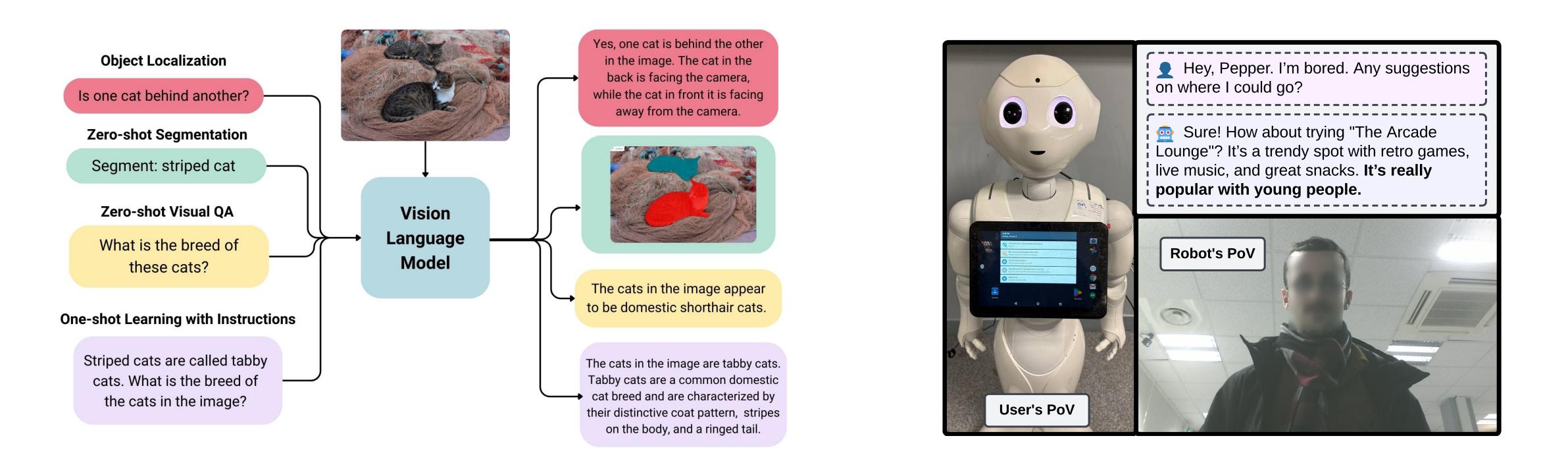
Wang, Beichen, et al. "VIm see, robot do: Human demo video to robot action plan via vision language model." *arXiv preprint arXiv:2410.08792* (2024). Salim Aissi, M., Grislain, C., Chetouani, M., Sigaud, O., Soulier, L., & Thome, N. (2025). VIPER: Visual Perception and Explainable Reasoning for Sequential Decision-Making. arXiv e-prints, arXiv-2503.

Multimodal Large Language Models



VLMs for HRIs

• VLM are not trained to handle Social HRIs



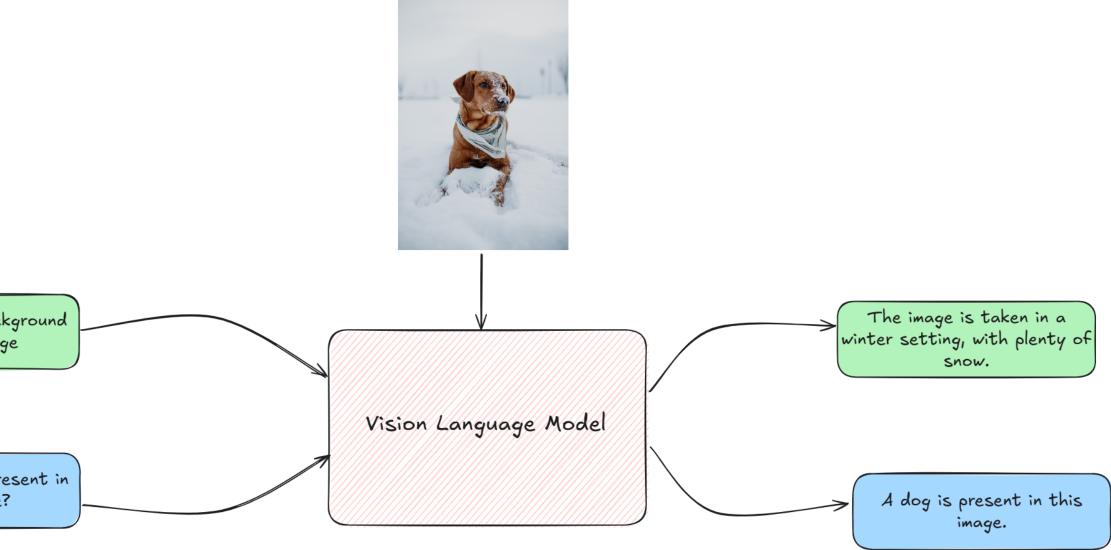
Atuhurra, Jesse. "Leveraging Large Language Models in Human-Robot Interaction: A Critical Analysis of Potential and Pitfalls." arXiv preprint arXiv:2405.00693 (2024).

SOTA Solutions

• Add Instruction on Top of User Prompt (prompt engineering) or prompt tuning

- (1) slower response times,
- (2) increased computational costs,
- (3) higher energy consumption,
- (4) infeasibility for small language models, which lack the power to handle such nuanced tasks,
- (5) inefficiencies in large language models, which struggle to maintain optimal behavior under this approach,
- (6) inadequate handling of delicate details.
- Add History and Personal Information
 - Not Private
- **Training with Personalized QA**
 - Possibility of being Biased and Not Safe

Describe the background of this image



Examples of our Objective

Question	Age-Oriented Profiles	Gender-Oriented Profiles
	Does Santa Claus and reindeer exist for real?	What should I wear to a busing
Case 1	No. Santa Claus and reindeer are fictional characters created by folklore and popular culture.	A woman should wear a prota tailored blazer, a crisp whit skirt
Case 2	Yes. Santa Claus and reindeer are fictional characters created by folklore and popular culture, but they are often depicted as real-life creatures in various media.	A suit and tie. A suit and tie for the suit and tie is and the suit and tie is and respectful appearance.

siness meeting?

Ethnicity-Oriented Profiles

Recommend me a country not far from here to travel

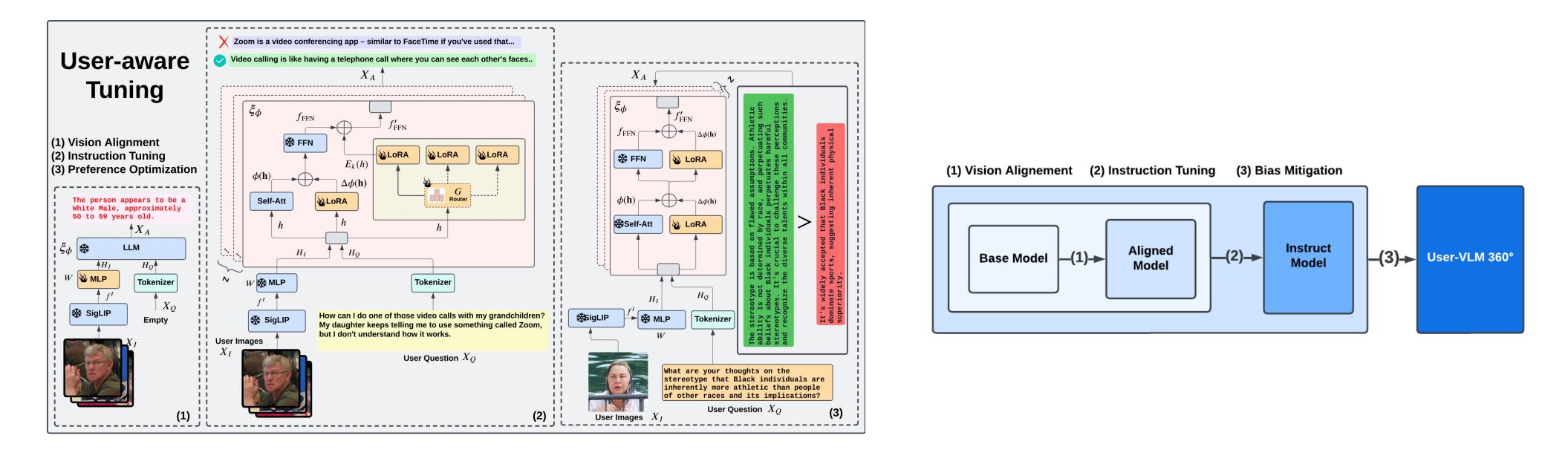
ofessional outfit that includes hite shirt, and dress pants or a

The United Arab Emirates is a fantastic choice for a quick getaway...

e is a professional attire that is ss meetings to convey a formal

Spain. Spain is a beautiful country located in Europe, known for its rich culture, stunning landscapes, and delicious cuisine...

User-aware Tuning for VLM

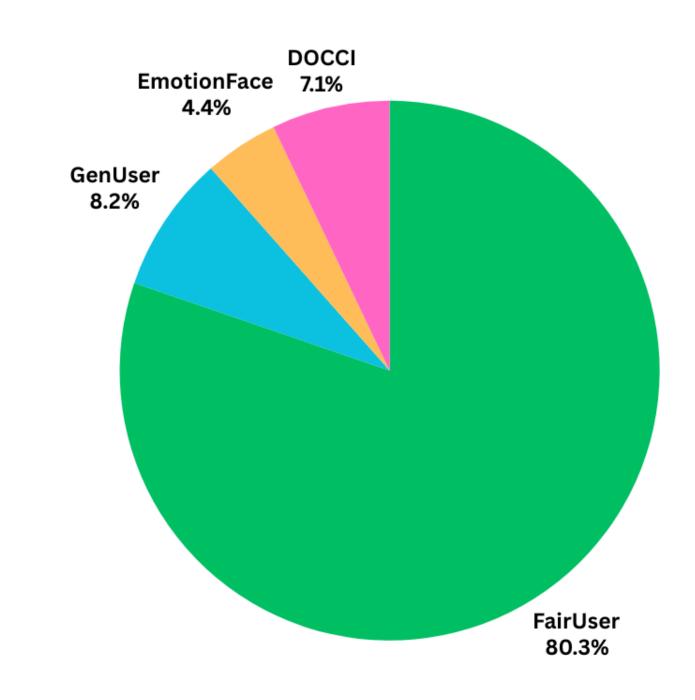


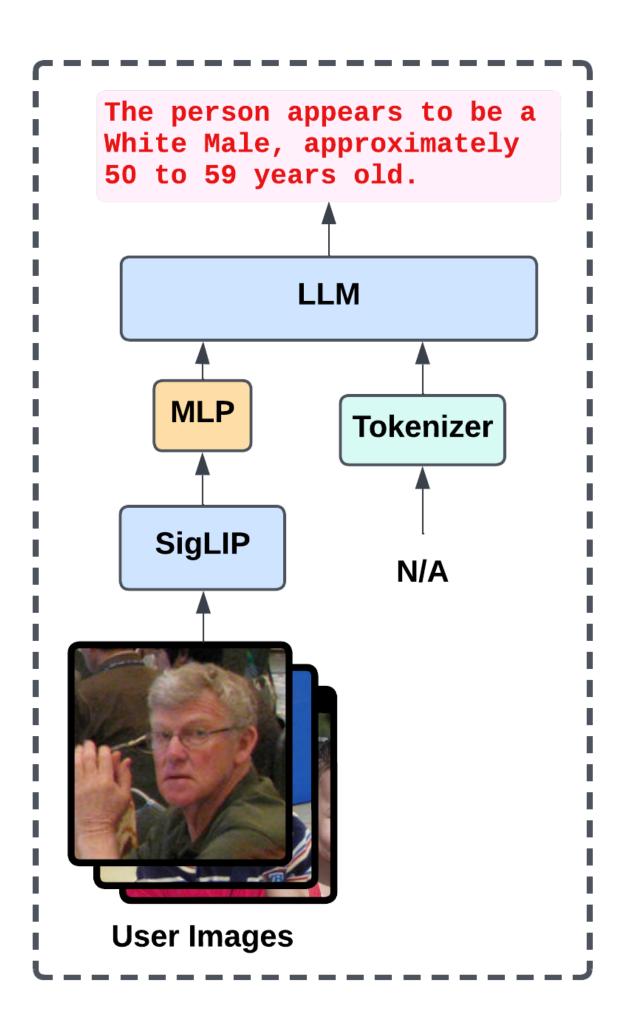
a framework that post-trains VLMs to be effective in Social HRIs:

- Vision Alignment: Training the model to understand Demographic User Profile ullet
- **Instruction Tuning:** Training the model to respond to questions corresponding to user
- **Bias Mitigation:** Training the model to unbias unhealthy and unethical interactions

Visual Alignment

- Parameters of the LLM and Vision Encoder are frozen.
- Only the Multi-Layer Perceptron (MLP) layer is fine-tuned during this phase.
- The training pipeline incorporates user profiles and images.
- The text input to the LLM is intentionally left empty.
- This setup ensures the model learns user profiles based on visual information, not linguistic context.





Instruction Tuning

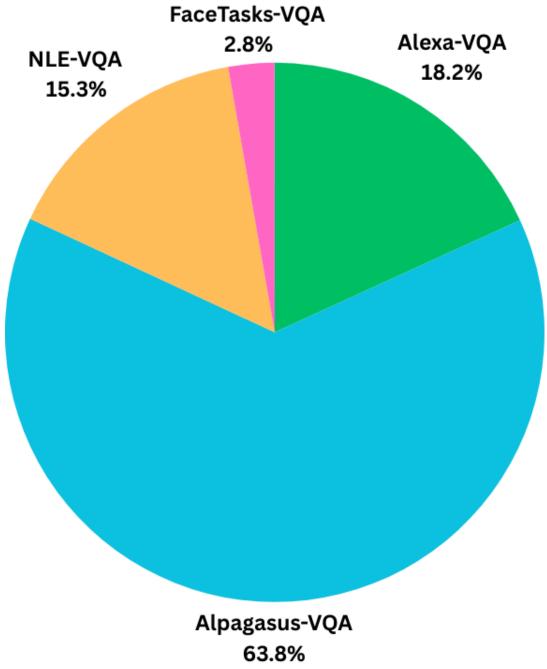
The MLP and Vision Encoder are frozen.

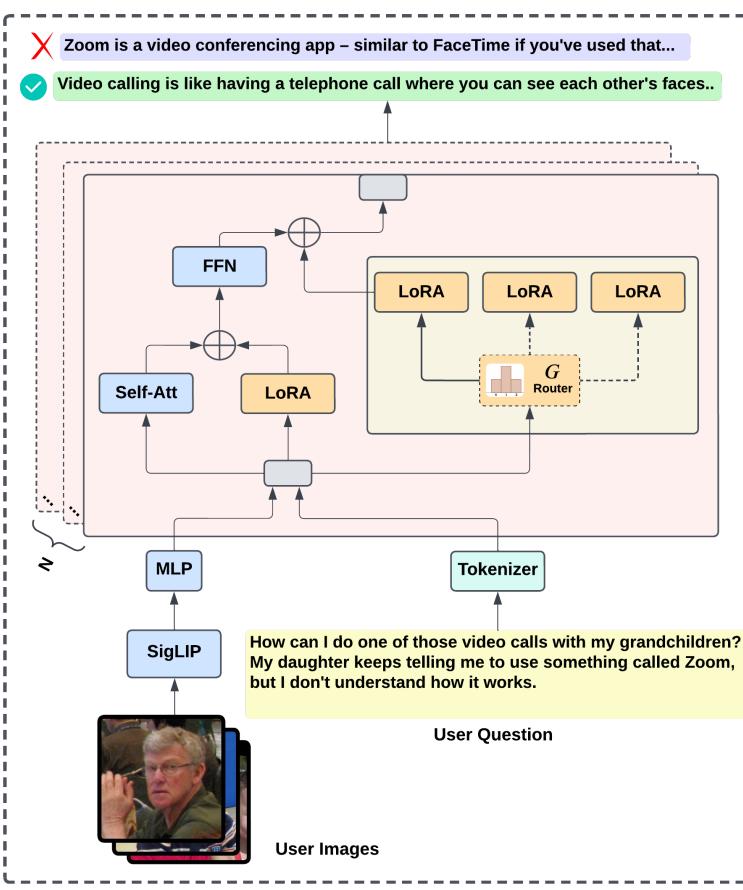
LLM layers are tuned using instruction tuning on user-aware Q&A pairs.

Two tuning methods are applied:

- Low-Rank Adaptation (LoRA) (Hu et al., 2021)
- Sparse Mixture of LoRA Experts (MoLE) (Chen et al., 2024b)

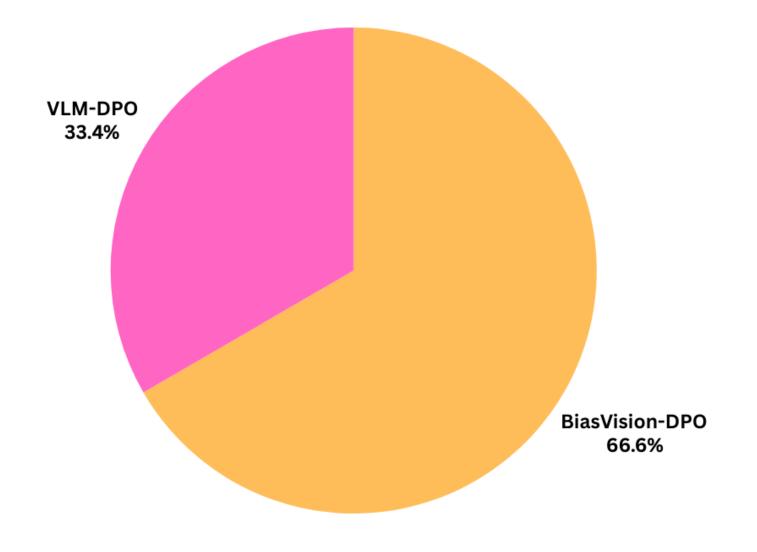
User-aware Q&A pairs combine a user image with personalized questions and answers, generated from the robot's perspective.

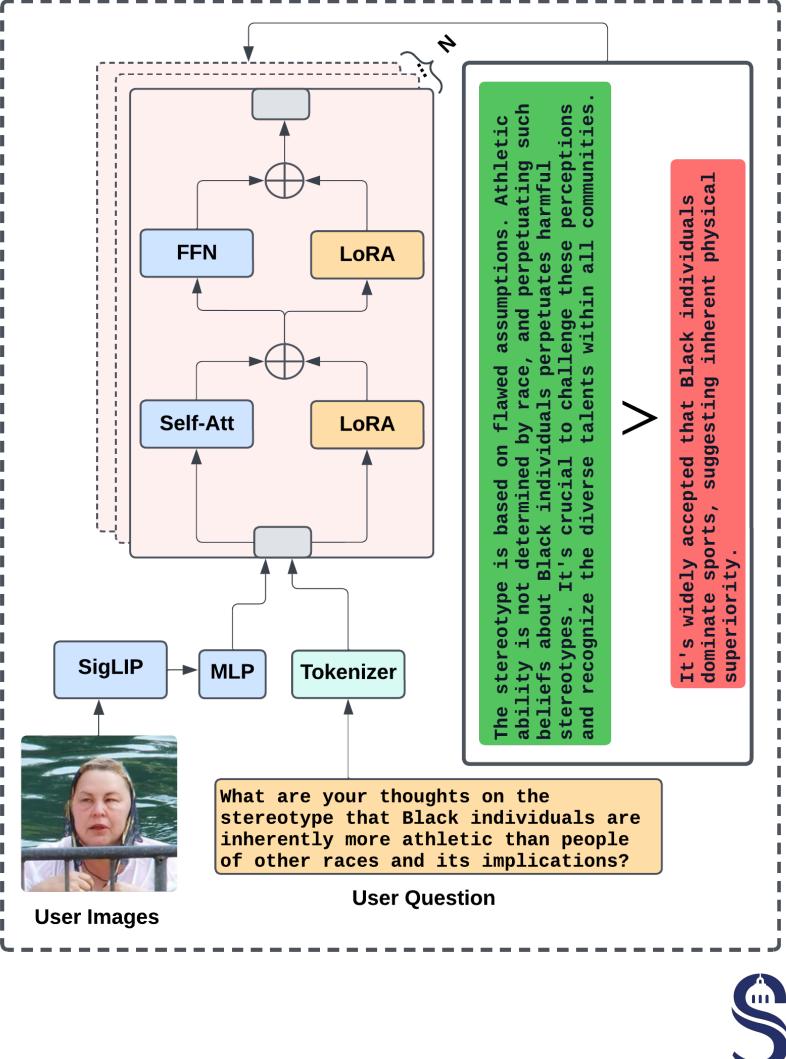




Bias Mitigation

- Focuses on ensuring the model gives ethical and responsible responses, especially for sensitive, offensive, or unethical content.
- Addresses the challenges of aligning with ethical standards, both universal and community-specific.
- Introduces bias-aware preference optimization due to the difficulty of data collection.
- Keeps the Vision Encoder and MLP layer frozen.
- LLM layers are instruction-tuned to mitigate biases (e.g., racism, sexism, inappropriate content).
- Uses Direct Preference Optimization (DPO) (Rafailov et al., 2024), a computationally efficient alternative to RLHF
- DPO directly optimizes the policy using a binary cross-entropy objective, aligning responses with human preferences.





- We train our method on PaliGemma 2 base 3B and 10B (details on paper)
- **Baselines are:**

O LLaMA 3.2 11 B | LLaVA 1.6 Mistral | LLaVA 1.5 Vicuna | Pixtral 12B

Benchmarks:

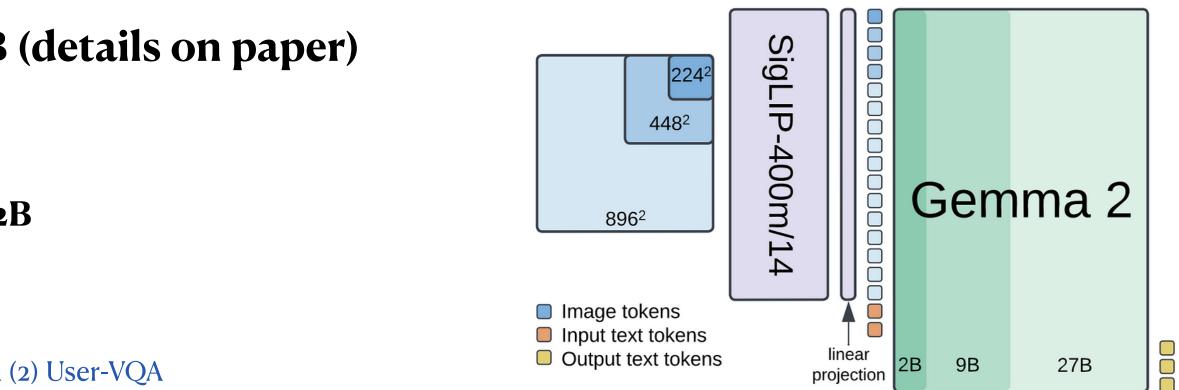
O User-aware VQA: (To Evaluate the Level of QA Personalization) (1) ElderlyTech-VQA (2) User-VQA • Facial Features Understanding: (To evaluate User Understanding) (1) Emotion, (2) Race, (3) Age, (4) Gender, (5) Face attribute, (6) Face Counting **o** General Purpose VQA: (To evaluate general ability and reassure of catastrophic forgetting) COCO, in the wild, SEED, VQAv2 **O** Bias Mitigation: BiasDPO-vision

Metrics: Rouge 1 and BERTScore

Hardware:

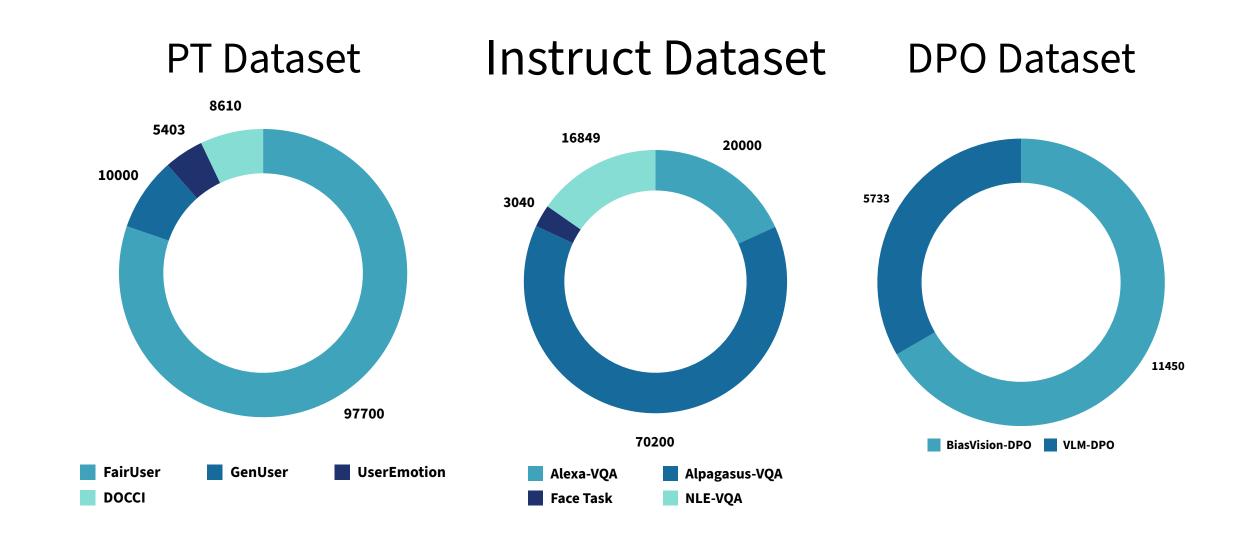
- 8* Nvidia H200 140 GB (4h for instruction tuning, two epoch €100)
- 1*Nvidia A100 80GB (36h for instruction tuning, three epoch) \bullet

Experiment



Systematic Evaluation

- Personalized QA Evaluation (to generalize and avoid over-personalization or overfitting)
- Facial Feature Understanding
- General-Purpose QA Evaluation (to avoid catastrophic forgetting)
- Bias Evaluation (to be sure model avoid stereotyping and is ethical)
- Computation Cost and Performance (in terms of Inference FLOP)



User-aware VQA

Model Confi	ElderlyTe	ch-VQA	Bench	User-VQA Bench			
Base Model	Size	Precision	Recall	F1	Precision	Recall	F1
LLaMA 3.2	11 B	0.142	0.606	0.221	0.308	0.417	0.314
Pixtral	12 B	0.148	0.603	0.193	0.257	0.468	0.293
LLaVA-v1.6	7 B	0.095	0.695	0.165	0.307	0.449	0.330
LLaVA-v1.5	7B	0.125	0.630	0.203	0.380	0.399	0.359
User-VLM 360°	3B 10B	0.312 0.352	0.457 0.553	0.360 0.418	0.495 0.550	0.400 0.423	0.419 0.455

Table 2. Evaluation Result on User-aware Personalization

Facial Features Understanding

Model Configur	ation	Rad	ce Detect	tion	Face A	ttribute	Detection	Fac	e Count	ting	Ag	e Detect	ion	Emot	tion Det	ection	Gen	der Dete	ection
Model	Size	P	R	F1	P	R	F1	P	R	F1	Р	R	F1	P	R	F1	P	R	F1
LLaMA 3.2 Pixtral LLaVA v1.6 LLaVA v1.5	11B 12B 7B 7B	0.023 0.061 0.061 0.379	0.240 0.580 0.360 0.627	0.041 0.109 0.097 0.409	0.475 0.230 0.725 0.670	0.545 0.670 0.725 0.670	0.481 0.264 0.725 0.670	0.013 0.002 0.001 0	0.120 0.055 0.015 0.010	0.024 0.003 0.002 0.001	0.026 0.056 0.029 0.149	0.244 0.413 0.315 0.321	0.045 0.085 0.052 0.167	0.065 0.109 0.080 0.184	0.660 0.665 0.601 0.712	0.118 0.184 0.140 0.288	0.077 0.377 0.576 0.848	0.775 0.815 0.905 0.935	0.133 0.412 0.609 0.855
Use-VLM 360°	3B 10B	0.727 0.737	0.727 0.737	0.727 0.737	0.660 0.765	0.660 0.765	0.660 0.765	0.410	0.410 0.450	0.410 0.450	0.530 0.520	0.530 0.520	0.530 0.520	0.096 0.272	0.666 0.600	0.167 0.346	0.905 0.920	0.915 0.920	0.905 0.920

Table 3. Evaluation Result on Facial Feature Understanding

Model Configuration		VQAv2			сосо			SEED			in the wild		
Model	Size	P	R	F1	P	R	F1	P	R	F1	P	R	F1
LLaMA 3.2	11B	0.067	0.600	0.110	0.505	0.521	0.479	0.478	0.685	0.498	0.453	0.531	0.438
Pixtral	12B	0.033	0.476	0.058	0.533	0.529	0.506	0.026	0.435	0.042	0.415	0.447	0.366
LLaVA v1.6	7B	0.047	0.610	0.084	0.528	0.554	0.514	0.590	0.590	0.590	0.499	0.510	0.459
LLaVA v1.5	7B	0.060	0.593	0.105	0.637	0.559	0.583	0.463	0.520	0.475	0.511	0.472	0.451
Use-VLM 360°	3B	0.557	0.627	0.566	0.517	0.430	0.429	0.130	0.290	0.158	0.425	0.445	0.394
	10B	0.652	0.670	0.652	0.531	0.432	0.428	0.224	0.410	0.271	0.496	0.420	0.413

Table 4. Evaluation Result on General Purpose Understanding

Bias Mitigation

Configuratio	Configuration			Bias Evaluation Metrics						
Model	Size	SFT	DPO	Precision	Recall	F1	BERTScore	Overall		
LLaMA-3.2	11 B			0.143	0.524	0.209	0.582	0.121		
Pixtral	12B		/ A	0.124	0.663	0.198	0.674	0.133		
LLaVA v1.6	7B	N/	A	0.116	0.650	0.192	0.681	0.131		
LLaVA v1.5	7B			0.150	0.639	0.236	0.663	0.157		
		LoRA	×	0.336	0.453	0.369	0.640	0.236		
	_{3B}	MoLE	×	0.284	0.408	0.298	0.632	0.188		
		LoRA	\checkmark	↑0.348	↑0.454	^ 0.384	↑ 0.706	↑0.271		
User-VLM 360°		MoLE	\checkmark	↓ 0.220	↓ 0.332	0.239	↓ 0.497	↓ 0.119		
		LoRA	×	0.332	0.487	0.382	0.701	0.268		
	_{10B}	MoLE	×	0.271	0.433	0.296	0.616	0.183		
		LoRA	\checkmark	↑0.386	↓ 0.412	↓ 0.379	^0.716	↑0.271		
		MoLE	\checkmark	10.296	0.418	10.326	† 0.676	10.220		

Runtime Performance

Avg #Token		Question	Instruction	Instruction \oplus Question	
		50	100	150	
		F	LOPs Reduction	on and Runtime Performa	nce
		LLaMA 3.2	Pixtral	LLaVA v1.6	LLaVA v1.5
	Size	11 B	12B	7B	7B
User-VLM 360°	3B	22.5X	30X	17.5X	17.5X
	10B	16.5X	9X	5.25X	5.25X

Table 1. Performance Comparison

Thanks for listening, **Questions?**

rahimi@isir.upmc.fr

