

SmolVLA: A vision-language-action model for affordable and efficient robotics

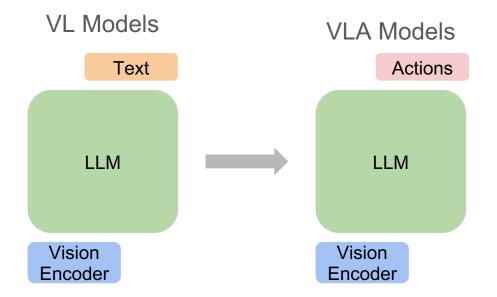
Mustafa Shukor, Dana Aubakirova, Francesco Capuano, Pepijn Kooijmans, Steven Palma, Adil Zouitine, Michel Aractingi, Caroline Pascal, Martino Russi, Andres Marafioti, Simon Alibert, Matthieu Cord, Thomas Wolf, Remi Cadene

2025

SmolVLA: sorting cubes based on colors

Instruction: Put the red cube in the right box and the blue cube in the left box

VLAs: vision-language-action models



2025-3-28

VLAs: vision-language-action models

Open X-Embodiment: Robotic Learning Datasets and RT-X Models Open X-Embodiment Collaboration⁰

Google DeepMind

GR00T N1: An Open Foundation Model for Generalist Humanoid Robots

https://robotics-transformer2.github.io

2023-8-1

RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control DexVLA: Vision-Language Model with Plug-In Diffusion Expert for General Robot Control

 π_0 : A Vision-Language-Action Flow Model for General Robot Control

Physical Intelligence

Octo: An Open-Source Generalist Robot Policy

Octo Model Team

OpenVLA: An Open-Source Vision-Language-Action Model

1 0

1 0

SmolVLA: overview

Community datasets

SmolVLA

- Community datasets
- ~ 480 datasets
- Tabletop manipulation tasks
- VLM annotation

- Small (0.45B params)
- Efficient at training/inference
- Asynchronous inference

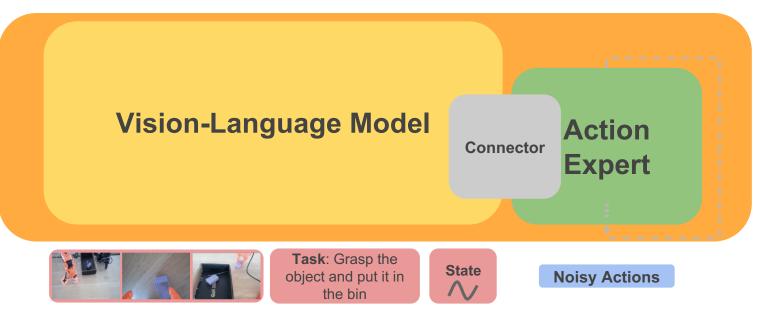
- So100, So101
- 100s \$
- 3D printed robots

SmolVLA: model architecture

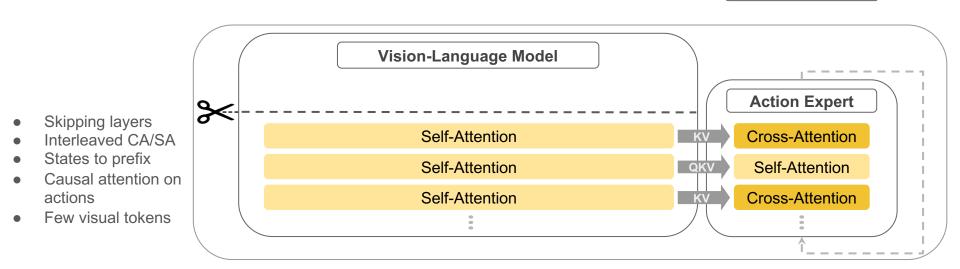
SmolVLA: model architecture

 $[a_t, a_{t+1} \dots, a_{t+H}]$

- VLM (SmolVLM-2)
- Action expert (transformer + flow matching)
- Linear connectors



SmolVLA: model architecture



Task: Grasp the object and put it in the bin

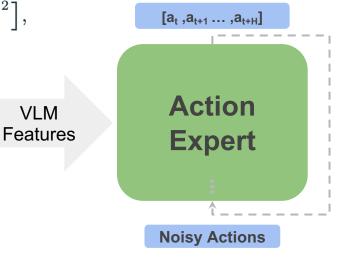
State

Γ

[a_t ,a_{t+1} ... ,a_{t+H}]

SmolVLA: action expert with flow matching

$$\mathcal{L}^{\tau}(\theta) = \mathbb{E}_{p(\mathbf{A}_t | \mathbf{o}_t), q(\mathbf{A}_t^{\tau} | \mathbf{A}_t)} \Big[\left\| \mathbf{v}_{\theta}(\mathbf{A}_t^{\tau}, \mathbf{o}_t) - \mathbf{u}(\mathbf{A}_t^{\tau} | \mathbf{A}_t) \right\|^2 \Big],$$
$$\frac{\mathbf{u}(\mathbf{A}_t^{\tau} | \mathbf{A}_t) = \epsilon - \mathbf{A}_t}{\mathbf{A}_t^{\tau} = \tau \mathbf{A}_t + (1 - \tau)\epsilon,}$$



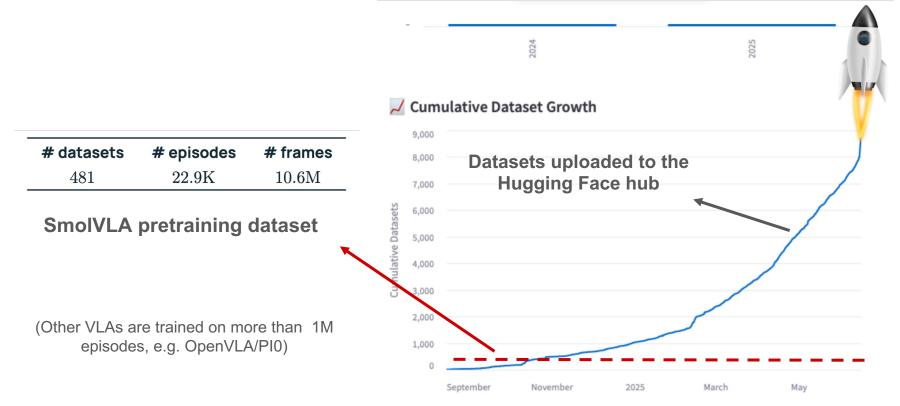
ucces	s Rate	• (%) ·	– LIBERO
; O	G	10	Avg
9 94	85	53	80.25
2 85	86	38	75.25
	5 O 9 94	6 O G 9 94 85	9 94 85 53

Lipman, Yaron, et al. "Flow matching for generative modeling." *arXiv preprint arXiv:2210.02747* (2022).

SmolVLA: pretraining on community datasets

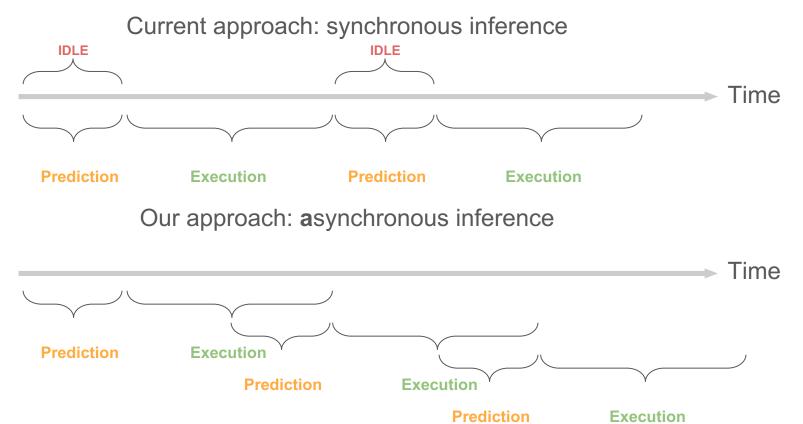
Community datasets

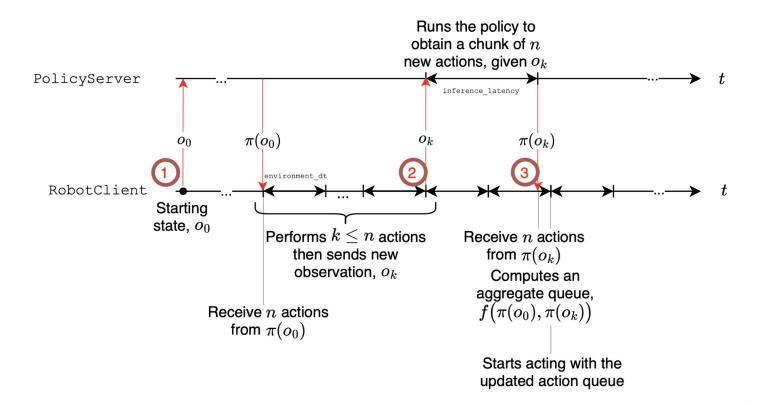
SmolVLA: pretraining on community datasets



SmolVLA: pretraining and multitask finetuning

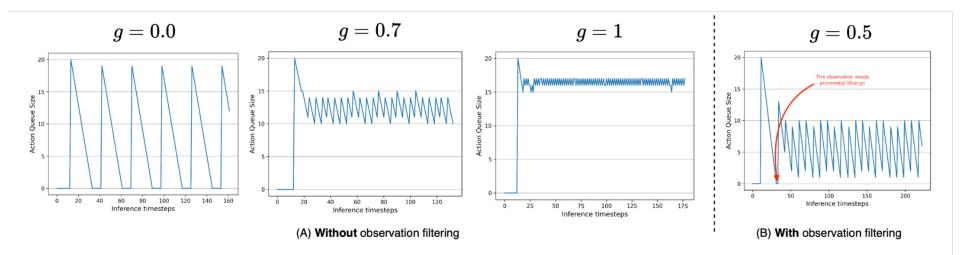
		Success Rate (%) — Real World					
Policy	VLA pt.	Pick-Place	Stacking	Sorting	Avg.		
Single-task Training							
SmolVLA $(0.45B)$	No	55	45	20	40		
Multi-task Training							
SmolVLA (0.45B)	No	80	40	35	51.7		
SmolVLA $(0.45B)$	Yes	75	90	70	78.3		





Algorithm 1 Asynchronous inference control-loop

```
1: Input: horizon T, chunk size n, threshold g \in [0, 1]
 2: Init: capture o_0; send o_0 to POLICYSERVER; receive \mathbf{A}_0 \leftarrow \pi(o_0)
 3: for t to T do
         a_t \leftarrow \text{POPFRONT}(\mathbf{A}_t)
 4:
         \text{EXECUTE}(a_t)
                                                                                                                            \triangleright execute action at step t
 5:
         if \frac{|\mathbf{A}_t|}{dt} < q then
 6:
                                                                                                                             \triangleright queue below threshold
              capture new observation, o_{t+1}
 7:
              if NEEDSPROCESSING(o_{t+1}) then
                                                                                               \triangleright similarity filter, or triggers direct processing
 8:
                   async_handle \leftarrow ASYNCINFER(o_{t+1})
                                                                                               \triangleright Trigger new chunk prediction (non blocking)
 9:
                  \tilde{\mathbf{A}}_{t+1} \leftarrow \pi(o_{t+1})
                                                                                                      \triangleright New queue is predicted with the policy
10:
                  \mathbf{A}_{t+1} \leftarrow f(\mathbf{A}_t, \mathbf{A}_{t+1})
                                                                                                                        \triangleright aggregate overlaps (if any)
11:
              end if
12:
         end if
13:
         if NOTCOMPLETED(async_handle) then
14:
              \mathbf{A}_{t+1} \leftarrow \mathbf{A}_t
                                                                                     \triangleright No update on queue (inference is not over just yet)
15:
         end if
16:
17: end for
```

Inference	Success Rate (%) – Real World							
	Pick-Place	Pick-Place Stacking Sorting		Avg				
Sync	75	90	70	78.3				
Async	80	90	50	73.3				

(a) | Performance (success rates).

Inference	Time (s) – Real World						
	Total Avg		Std				
Sync	137.5	13.75	2.42				
Async	97.0	9.70	2.95				
(b) Task completion time.							

Inference	# of Cubes – Real World							
	Total Avg		Std					
Sync	9	1.8	0.45					
Async	19	3.8	1.3					

(c) | Performance in fixed time.

- Performance on par with sync inference in typical evaluation setups
- Faster to complete tasks
- Better reactivity and adaptability to environment changes

SmolVLA: sync vs async inference

- Async inference is faster
- Complete more tasks in fixed time frame

SmolVLA: main results (real world)

	Success Rate (%) — Real World						
Policy	Pick-Place	Stacking	Sorting	Avg.			
Single-task Training							
ACT	70	50	25	48.3			
Multi-task Training							
$\pi_0 (3.5B)$	100	40	45	61.7			
SmolVLA $(0.45B)$	75	90	70	78.3			

Table 3 | Real-world benchmarks (SO100).Success rate (%)across three tasks using policies trained in multi-task and single-
task settings.

	Success Rate (%) – Real World				
Policy	In Distribution	Out of Distribution			
Single-task Training					
ACT	70	40			
SmolVLA $(0.45B)$	90	50			

Table 4 | Real-world benchmark (SO101).Success rate (%) for the Pick-Place-Lego taskusing policies trained in single-task setting.

SmolVLA: main results (simulation)

Benchmark	Policy (# Params)	VLA Pt.	S	Success Ra	te (%) -	- Simulation	
LIBERO			Spatial	Object	Goal	Long	Avg.
	Diffusion Policy (Khazatsky et al., 2024)	No	78.3	92.5	68.3	50.5	72.4
	Octo (0.09B) (Team et al., 2024)	Yes	78.9	85.7	84.6	51.1	75.1
	OpenVLA (7B) (Kim et al., 2024)	Yes	84.7	88.4	79.2	53.7	76.5
	π_0 (Paligemma-3B)	No	87	63	89	48	71.8
	$\pi_0 (3.3B)$	Yes	90	86	95	73	86.0
	SmolVLA (0.24B)	No	87	93	88	63	82.75
	SmolVLA $(0.45B)$	No	90	96	92	71	87.3
	SmolVLA $(2.25B)$	No	93	94	91	77	88.75
Meta-World			Easy	Medium	Hard	Very Hard	Avg.
	Diffusion Policy (Chi et al., 2023)	No	23.1	10.7	1.9	6.1	10.5
	TinyVLA (Zhou et al., 2024)	No	77.6	21.5	11.4	15.8	31.6
	π_0 (3.5B-Paligemma)	No	80.4	40.9	36.7	44.0	50.5
	$\pi_0 (3.5B)$	Yes	71.8	48.2	41.7	30.0	47.9
	SmolVLA (0.24B)	No	86.43	46.36	35	60	56.95
	SmolVLA (0.45B)	No	82.5	41.8	45.0	60.0	57.3
	SmolVLA $(2.25B)$	No	87.14	51.82	70	64	68.24

SmolVLA: ablation study (skipping layers)

		N	N Success Rate (%) – LIBERC					
		, n	S	0	G	10	Avg	
		8	77	88	86	49	75.0	
VLM-500M		16	88	91	91	44	78.5	
		24	86	97	86	49	79.5	
		32	89	94	85	53	80.3	
		Skip $\%2$	84	90	83	45	75.5	
	_	VLM-256M	86	83	75	59	75.8	

SmolVLA: ablation study (action expert size)

Expert width	Success Rate (%) – LIBERO					
(w.r.t. VLM)	S	0	G	10	Avg	
×1.00	87	96	90	56	82.3	
$\times 0.75$	82	89	84	55	77.5	
$\times 0.50$	89	94	85	53	80.3	
$\times 0.25$	76	97	83	39	73.8	

SmolVLA: ablation study (attention mask)

Attention	Success Rate (%) – LIBERO						
mask	S	0	G	10	Avg		
Bidir	79	86	82	23	67.5		
Causal	80	94	84	40	74.5		

SmolVLA: ablation study

Action	Suc	Success Rate (%) – LIBERO						
Steps	S	0	G	10	Avg			
1	89	94	85	53	80.3			
10	89	94	91	57	82.8			
30	76	91	74	42	70.8			
50	54	70	58	25	51.8			

Sampling more observations leads to better scores

Chunk	Success Rate (%) – LIBERO				
Size	S	0	G	10	Avg
1	45	77	54	24	50.0
10	90	94	94	58	84.0
30	85	94	87	48	78.5
50	89	94	85	53	80.3
100	83	88	85	42	74.5

Training to predict chunk of actions is better than predicting single action

SmolVLA: new robot (So101)

SmolVLA: conclusion

Future work:

- Pretraining on more community and academic datasets
- Cross-embodiment training
- Scaling model size
- Better VLMs for robotics

Resources: 30K GPUhs + 100s euros for the hardware + 1-2 people

Code and assets in LeRobot: https://github.com/huggingface/lerobot

