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ABSTRACT

This article has been submitted to CVIU and is currently under review. Remote sensing satellites
acquire a continuous stream of data on a daily basis. As most of those data are unlabeled, the develop-
ment of algorithms requiring weak supervision is of paramount importance. In this paper, we show that
the need for annotation for Synthetic Aperture Radar data can be reduced by coupling a despeckling
task (self-supervised) and a segmentation task (supervised). The proposed self-supervised learning
framework, called MERLIN-Seg, has been trained for building footprint extraction and achieves fa-
vorable performances even with 1% of annotated data. We show that conditioning the network on
despeckling without labels is beneficial for supervised segmentation. Our experiments demonstrate
that the joint training of the two tasks achieves better performances than a vanilla segmentation net-
work in terms of IoU, F1 score, and accuracy on both simulated and real SAR images.

1. Introduction

Earth observation satellites carry onboard different kind of

remote sensors collecting information characterizing the Earth.

Among these, Synthetic Aperture Radar (SAR) is an active sys-

tem with imaging capabilities. As an active sensor, it can collect

information at any time of the day and in (almost) all weather

conditions, providing continuous and global coverage of the

Earth’s surface. This powerful feature of SAR allows access to

cloud-covered areas, such as the tropics and subtropics, subject

to long wet seasons and frequent precipitation.

Deep learning algorithms play an essential role in the anal-

ysis of remote sensing data (Zhu et al., 2017). Once they are

tuned and deployed, they can process data in a quick manner to
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extract useful information for Earth monitoring. To train such

algorithms, one often needs a large set of labeled data. In re-

mote sensing, the great abundance of images is guaranteed by

the presence of numerous sensors embarked on satellites in or-

bit around the Earth and the increased adoption of open data

policies. However, these images are generally not annotated,

making data labeling one of the big open challenges in remote

sensing (Wang et al., 2022b).

In the computer vision community, alternatives to vanilla su-

pervised algorithms requiring labeled data have been proposed:

so-called self-supervised learning (SSL) approaches have been

shown to learn powerful representations for many tasks (Xian

et al., 2017; Chen et al., 2020b; Lehtinen et al., 2018; Finn

et al., 2017; Le-Khac et al., 2020). SSL has recently sparked

great attention in remote sensing (Wang et al., 2022b), but still

few works were proposed to deal with SAR data. In an SSL

framework, a neural network is pre-trained on a self-supervised



pretext task and then fine-tuned on the actual downstream task.

This relieves the network of the burden of seeing many labeled

data, reducing the need for annotation (Zheng et al., 2021).

Contrastive learning approaches comprise another family of

SSL methods where a network is trained to force a close latent

representation between augmented views of the same image

(and possibly push away representations from negative sam-

ples). To this aim, one may resort to techniques such as image

rotation, mirroring, and image colorization. (Baranchuk et al.,

2022; Brempong et al., 2022) have demonstrated that denoising

pre-training learns useful semantic representations. As an alter-

native to this sequential scheme, a neural network can be trained

simultaneously on both downstream task and pretext task, such

as image denoising. In DenoiSeg (Buchholz et al., 2021), while

learning to reduce noise from both unlabeled and labeled im-

ages, the network efficiently co-learns to segment even on a few

labeled samples.

The application of SSL to SAR data is not straightforward

(Wang et al., 2022b). Augmenting SAR data is indeed very sen-

sitive: unlike optical images, SAR images are complex-valued,

their pixels represent measurements with physical meaning, and

the appearance of the scene is intimately related to the sensor

position and acquisition mode. Moreover, SAR images are af-

fected by speckle, a multiplicative perturbation with specific

statistics.

In this paper, we present MERLIN-Seg, a general framework

to address the shortage of annotations in SAR images, relying

on self-supervised despeckling (Dalsasso et al., 2021a). As in

(Buchholz et al., 2021), we simultaneously train our model on

the self-supervised despeckling and supervised segmentation

tasks. We empirically demonstrate that our SSL framework is

beneficial for the segmentation of SAR images, especially when

the availability of labels is low. We test our approach on the spe-

cific task of building footprint segmentation on simulated and

real data. The main contributions of our work are the following:

• To the best of our knowledge, we are the first to propose to

use despeckling as an SSL technique to extract semantic

features from SAR data for label-efficient semantic seg-

 

mentation. In particular, we propose a generalization of 

the MERLIN framework (Dalsasso et al., 2021a) for the 

simultaneous learning of despeckling and segmentation.

• The proposed MERLIN-Seg approach extracts semanti-

cally meaningful features from SAR images without the

need of designing SAR-specific augmentation. We argue

that SAR images can be seen as inherently augmented

due to the presence of speckle. Thus, we exploit the na-

ture of SAR data to devise a physically meaningful self-

supervised task.

• We show that the simultaneous learning of SAR despeck-

ling and segmentation is more effective than SSL pre-

training on SAR despeckling, although both strategies are

relevant and outperform a fully supervised learning on the

footprint segmentation task when few labels are available.

• We validate MERLIN-Seg on both EMPRISE simulated

SAR images and real TerraSAR-X data, highlighting the

versatility of the proposed approach to different acquisi-

tion modalities and resolutions. Moreover, our approach

shows to perform well both in dense and sparse urban en-

vironments.

2. Related Work

SAR despeckling SAR is a coherent imaging system. As such,

the complex SAR signal z is the result of the coherent summa-

tion of many elementary echoes coming from the same resolu-

tion cell. For rough surfaces at the wavelength scale and in ab-

sence of predominant scatterers, the measured intensity I = |z2|

presents strong fluctuations that severely limits the exploitation

of SAR images. Such fluctuations take the name of speckle

phenomenon. The SAR intensity I, the underlying reflectiv-

ity R and the speckle S are linked by a multiplicative relation:

I = R×S (Goodman, 2007). The aim of despeckling techniques

is to suppress the speckle and restore the underlying reflectivity.

Previously unseen performances has been obtained by SAR

despeckling approaches relying on a self-supervised training

strategy (Fracastoro et al., 2021; Dalsasso et al., 2022). Indeed,
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Fig. 1: Illustration of the proposed MERLIN-Seg approach for joint despeckling and segmentation

the difficulty in SAR imaging to produce the clean groundtruth

signal R limits the development of supervised methods. SSL for

SAR despeckling stems from the advances in self-supervised

image denoising (Lehtinen et al., 2018; Krull et al., 2019; Buch-

holz et al., 2021). Given two independent noisy images yi and

y j representing the same underlying clean signal x, a neural net-

work fθ(.) can be trained to maximize the agreement between

network’s output fθ(yi) and an independent noisy image y j. If

the noise likelihood is known, the network loss can be defined

as L = − log p(y j| fθ(yi)). Because yi and y j are i.i.d. samples,

the network cannot predict the random component of y j starting

from yi. Instead, it will predict the deterministic common com-

ponent, i.e. the clean signal x. This way, a neural network can

be trained for image denoising by only seeing noisy examples.

Depending on the way of splitting the dataset into two in-

dependent sets, one can class self-supervised despeckling ap-

proaches into three categories:

• Multi-image self-supervised approaches exploit images

acquired at different dates (sufficiently spaced-apart so that

the speckle is temporally decorrelated). Thus, one obtains

several samples representing the same underlying scene,

provided that the changes can be compensated (Dalsasso

et al., 2021b).

• In single-image self-supervised approaches, one can rely

on specific architectures excluding the central pixel from

the network receptive field (so-called blind-spot networks

(Laine et al., 2019; Lee and Jeong, 2022)) and keep it apart

to supervise network training. The specificity required by

such a receptive field limits the choice of architecture and

might reduce the network’s performance. Moreover, to

verify the independence of the hidden pixel with the neigh-

boring ones, it requires the speckle to be spatially indepen-

dent: such a hypothesis is however not verified in practice,

as data providers often deliver spatially-correlated SAR

products, and whitening the speckle requires a tedious and

touchy pre-processing, especially if sensors parameters are

unknown (Lapini et al., 2013).

• Most recently, MERLIN approach (Dalsasso et al., 2021a)

has demonstrated that any architecture can be trained on

single SAR images by exploiting the complex nature of

SLC SAR data. MERLIN exploits the phase informa-

tion to split the intensity image into two independent

sub-images, namely the real and imaginary parts, creat-

ing ideal conditions for self-supervised learning based on



noise2noise (Lehtinen et al., 2018).

Unlike the first two families of techniques, MERLIN does not

make any hypothesis on temporal coherence (as it is trained on

single dates), nor on speckle spatial correlation (as the network

implicitly learns it). For these reasons, MERLIN would fit like

a glove in an SSL framework for SAR imaging.

Semantic Segmentation and building footprint Semantic

segmentation has been a popular topic in computer vision for

many years. In the last decade, Convolutional Neural Networks

(CNNs) have been shown to be highly effective in learning dis-

criminative features and achieving high accuracy in various im-

age segmentation tasks. U-shaped CNN architectures such as

Unet (Ronneberger et al., 2015), UpperNet (Xiao et al., 2018)

or DeepLab (Chen et al., 2018) and their variants set new stan-

dards in computer vision. Recently, transformer architectures

tend to show better performances in semantic segmentation at

the cost of strong parameters overhead (Liu et al., 2021; Xie

et al., 2021; Themyr et al., 2023).

In the domain of remote sensing, land cover is a challenging

task due to the strong contrast dynamics, the lack and/or quality

of annotation, and the large size of remote sensing images. Hy-

brid CNN-Transformers architectures tend to show the best per-

formances for multi-spectral image segmentation (Wang et al.,

2022a; Scheibenreif et al., 2022). Concerning SAR data, the

lack of large high-resolution annotated datasets, the precence

of speckle and geometrical distortions strongly limit the capac-

ity of very large models. Moreover, due to the different sensing

techniques large models learned on optical images can not be

directly transferred for this task.

Semi and Self Supervised Learning Semi-supervised learn-

ing aims to make the most of the available data in cases where

only a small portion of the dataset is labeled. We can roughly

classify the semi-supervised learning methods into three fami-

lies: self-training with pseudo labels (Xie et al., 2020b), gener-

ative models (Ehsan Abbasnejad et al., 2017; Dai et al., 2017),

and consistency regularization (Miyato et al., 2018; Tarvainen

and Valpola, 2017; Laine and Aila, 2017; Valpola, 2015). Self-

training involves iteratively extending the labeled dataset with

high-confidence predictions from the model. Generative mod-

els learn the underlying distribution of the data and then use 

it to generate to unseen samples. Finally, consistency regular-

ization techniques involve enforcing the model’s output to be 

consistent across different perturbations of the input such as ad-

ditive noise, contrast jittering, or random flip (Xie et al., 2020a; 

Cubuk et al., 2020). This enforces a smoothness assumption 

on the input space. Seminal works include Ladder Networks 

(Valpola, 2015) or Pi-model (Laine and Aila, 2017) where con-

sistency is enforced between features maps or predictions from 

clean and noisy input. Adversarial training in semi-supervised 

learning aims to ensure smooth prediction on a ball around the 

data (Miyato et al., 2018).

Recent approaches in SSL rely on the same strategy where 

a pretext task is designed and solving it requires learning use-

ful image representations. These techniques achieve state-of-

the-art performance over approaches that learn representations 

from unsupervised data only. Visual pretext tasks include gray-

scale image colorization (Larsson et al., 2017), image patches 

localization and orientation prediction (Komodakis and Gidaris, 

2018), jigsaw puzzles(Noroozi and Favaro, 2016), or inpaint-

ing (Pathak et al., 2016). Similarly to earlier semi-supervised 

approaches, contrastive methods encourage the model to learn 

representations invariant to strong augmentations (Chen et al., 

2020a; Grill et al., 2020; Chen and He, 2021). Due to the intrin-

sic lack of annotations in remote sensing data, semi-supervised 

and self-supervised approaches appear as valuable strategies to 

train efficient classification and segmentation models. SSL ap-

praoches for SAR image classification and target recognition 

include contrastive strategies as well as patch rotation predic-

tion (Ren et al., 2021; Xu et al., 2021; Zhang et al., 2019).

However, the design of pretext tasks for SAR images is criti-

cal as they need to preserve the physical sense and the geometry 

of SAR data. (Zhang and Ma, 2022) shows that some augmen-

tations can have a negative effect on certain downstream tasks, 

as they can lead to undesired invariances suppressing discrim-

inative features or to the loss of fine-grained information. For 

instance, geometric distortions appearing in SAR images such



as shadowing and layover depend on sensor’s orientation and

are not rotation invariant.

3. Method

We propose to reduce the need for annotations by coupling

a despeckling task (self-supervised) with a segmentation task

(supervised) into a unique label-efficient framework: MERLIN-

Seg. While segmentation can only rely on labeled data, self-

supervised despeckling can benefit from the large amount of

raw data available to learn a semantic representation of the data,

without the need of augmenting them. The joint training of

the two tasks reduces the labeling requirements for the super-

vised task. In the following, the despeckling task will be first

addressed. Then, we will discuss how despeckling and seg-

mentation can simultaneously be trained into a unique semi-

supervised framework.

3.1. Self-supervised despeckling: MERLIN

We propose to use in this framework the self-supervised

MERLIN speckle reduction strategy (Dalsasso et al., 2021a).

Not only it achieves good restoration performances, but it is

also very flexible as it is agnostic to the network architecture.

Moreover, by training the network on Single-Look Complex

(SLC) SAR images, it learns sensor-specific parameters (e.g.,

speckle spatial correlation) by its own.

Goodman’s model of speckle (Goodman, 2007) describes the

complex speckle as a circular Gaussian distributed random vari-

able s. The signal z = a + jb measured over an area with re-

flectivity R is defined as z = s
√

R. Thus, the distribution of z is

given by:

pZ(z) =
1
πR

exp
(
−
|z|2

R

)
=

1
πR

exp
(
−

a2 + b2

R

)
. (1)

Based on the complex speckle model, in (Dalsasso et al., 2021a)

it has been shown that a complex SAR image z = a+ jb can be

decomposed into two i.i.d. components a and b ∼ N(0, R/2)

(with R the image of the reflectivity, i.e., the variance of the

k-th pixel is Rk/2), each one containing half of the informa-

tion of an intensity image (I = a2 + b2). This implies that a

 neural network can be trained in a self-supervised manner for 

speckle reduction as follows: the network fθ(.) takes as input 

one component (e.g., the real part a) and it evaluates the quality 

of the restored reflectivity image ( R̃ = fθ(a)) with respect to the 

other component (e.g., the imaginary part b). This is achieved 

by maximizing the likelihood of b with respect to the network 

output R̃:

LMERLIN(R̃, b) =
∑

k

− log p(bk |R̃k)

=
∑

k

1
2

log
(
R̃k

)
+

b2
k

R̃k
, (2)

where index k indicates the k-th pixel of the estimated reflectiv-

ity image R̃ or of the imaginary part b. In practice, because of

their independence, during training the real and the imaginary

parts are permuted at each iteration.

At inference time, the trained network is applied separately

on the real and imaginary part: the two intermediate estimations

fθ(a) and fθ(b) are finally averaged to obtain the final reflectiv-

ity estimation.

3.2. MERLIN-Seg: joint despeckling and segmentation

In a classical segmentation framework through deep learning,

a network is trained to produce, from the input image scene, a

segmentation map l̃ that has to be as close as possible to the

groundtruth map l. To optimize network weights for a binary

segmentation problem, one can use the weighted Binary Cross-

Entropy (BCE) defined as:

LBCE( l̃, l) =
∑

k

plk log(l̃k) + (1 − lk) log(1 − l̃k) (3)

with p = #negative samples/#positive samples being a weight

assigned to positive examples, lk being the class label and l̃k the

output class label of pixel k.

To implement MERLIN-Seg, we propose a generalization of

MERLIN as follows. The SAR image z = s
√

R can be seen

as augmentation of its reflectivity R by the complex speckle s.

The noisy nature of SAR images is leveraged within MERLIN-

Seg to extract semantic features through self-supervised de-

speckling with MERLIN, without the need of augmenting SAR



Fig. 2: Left image: example of building footprint superposed to an EMPRISE simulated image of Sainte-Marie. Right image: example of building footprint

superposed to a TerraSAR-X SpotLight image acquired over Paris. Both pictures display a 3000 × 3000 pixels image crop.

data. According to (Baranchuk et al., 2022), intermediate fea-

ture maps of a U-Net model for image denoising encode se-

mantic representations of the input image. Thus, we upsample

all feature maps from the upscaling branch of our U-Net model

employed in MERLIN and stack a 3 convolutional layers to ex-

tract the segmentation map. For the despeckling task, MER-

LIN processes separately squared real and imaginary parts a2

and b2, characterized by a poorer signal-to-noise ratio (SNR)

than the intensity image I = a2 + b2 by a factor of
√

2. To ex-

ploit all the available information for the segmentation task, we

compute the feature maps from both real and imaginary parts

with a sharing-weights network and we do an average before

feeding them to the 3-layers segmentation head. We choose

to have a lightweight segmentation head to limit the number

of segmentation-specific parameters, and maximize the param-

eters shared between the tasks. Such a choice is beneficial to

facilitate the tuning of the segmentation head when only few

labels are available for the downstream task.

The proposed two-heads architecture is trained end-to-end to

minimize the following loss function:

LMERLIN-Seg = λLMERLIN(r̃, b̃) + (1 − λ)LBCE( l̃, l) (4)

with λ ∈ [0, 1] an hyperparameter to balance the weight of the

two tasks during training. Setting it to 0 corresponds to plain

MERLIN despeckling. When no labels are available, the seg-

mentation loss LBCE( l̃, l) is set to 0. However, cross-task pa-

rameters are still tuned thanks to self-supervised despeckling:

while learning to suppress speckle from raw SAR data, the net-

work co-learns to segment on labeled SAR data.

4. Experiments

This section describes the set up of the experiments, the two

considered datasets for building footprint segmentation and dis-

cusses the obtained results.

4.1. Experimental Settings

Datasets. We evaluated the proposed MERLIN-seg method

on two different SAR land cover datasets. The first one is

a Single Look Complex (SLC) high resolution simulation of



12600x10800 pixels at X-band provided by the Onera’s EM-

PRISE simulator1 (Fig.2, top image). The slant-range reso-

lution is 0.71 m and azimuth resolution is 1 m. EMPRISE

can generate raw data and realistic SAR images based on the

modeling of the physical properties of scatterers present in the

3D scene. In our case, the scene is rendered from cadastral

and landcover information, digital elevation models, and fine-

grained field surveys of the city of Sainte-Marie in the south of

France. All ground cover elements ranging from small bushes

to whole buildings are modeled in 3D and ground surface is

generated at an average resolution of 5.3cm. The full 3D

database cover over 10 by 10 km area. The simulation pro-

cess allows us to generate perfect labels at the image resolution

including SAR effects such as layover or side lobes.

The second dataset is obtained from an SLC TerraSAR-X

6000x10000 SpotLight image acquired in July 2012 over the

city of Paris2 and its surrounding areas. The slant-range reso-

lution is 0.45 m and the azimuth resolution is 0.87 m (Fig.2,

bottom image). The labels are extracted from the BDtopo

database provided by the french National Geographic Institute

(IGN). The BDtopo can be freely downloaded and consists of

vector data describing the 2.5D buildings geometry: each geo-

referenced footprint is associated with the object’s height. We

performed the projection of the labels from nadir to the true in-

cidence angle from the TerraSAR-X sensor. The scene is com-

posed of dense urban areas and its segmentation is challeng-

ing due to the multiple overlays and shadows projected by the

buildings.

Implementation details. To set up our experiments, we build

on the U-Net model as in (Dalsasso et al., 2021a). To generalize

the network so that it performs simultaneous despeckling and

segmentation, we define an extra 3-layers segmentation head

composed of 64 kernels of size 3× 3 followed by Leaky ReLU,

32 kernels of size 3 × 3 followed by Leaky ReLU and a final

1 × 1 sized kernel followed by sigmoid activation to extract the

1http://emprise-em.fr
2These data have been provided by the DLR in the framework of the project

LAN1746.

class labels for each image pixel. The final binary segmentation 

mask is obtained by applying a threshold set to 0.5.

The EMPRISE simulated dataset is split into 3 non-

overlapping subsets as follows: network is fed with 11161 im-

age patches with a stride of 64, the validation set is composed 

of 5 non-overlapping image patches, whereas the test is con-

ducted on 70 non-overlapping image patches. All patches are 

of size 256 × 256. The U-Net backbone is composed of 5 

downsampling layers (compressing the 256 × 256 image patch 

down to an 8 × 8 latent representation) and 5 upscaling lay-

ers. The TerraSAR-X dataset is split into 3 independent subsets 

as follows: 1189 patches with a stride of 128 for training, 3 

non-overlapping patches for validation and 65 non-overlapping 

patches for testing. All patches are of 512 × 512 pixels. The 

U-Net backbone as one extra downscaling and upscaling layer 

w.r.t. the network described above. The choice of patch size 

and network depth is done to enlarge network receptive field.

For the segmentation baseline, to allow a fair comparison we 

consider the same U-Net model as in MERLIN and replace the 

last layer with a 1 × 1 convolutional filter followed by Sigmoid, 

in order to extract class labels (Fig.1). The input of this net-

work is the intensity SAR image. The network is trained with 

LBCE loss function on labeled data only. Both the segmentation 

baseline and MERLIN-Seg are trained for 100 epochs with a 

learning rate of 0.001 and Adam optimizer. For each percent-

age of labeled data, network weight’s are randomly intialized 

and training is done from scratch. We highlight that when only a 

limited number of annotated samples are available, the segmen-

tation baseline only sees labeled patches in input. On the con-

trary, thanks to the self-supervised despeckling task, MERLIN-

Seg always sees all the data. In the latter, batches are sampled 

randomly, i.e. we don’t impose any constraint on the number of 

labeled images composing a batch.

4.2. Results

The baseline for both experiments is a standard U-Net trained 

with binary cross-entropy on labeled data. Table 1 summarize 

our results on the simulated dataset for different proportions 

of labeled data. On this dataset, MERLIN-Seg is on par with



(a) Results on a 256 × 256 EMPRISE simulated image patch on Sainte-Marie. (b) Results on a 512 × 512 TerraSAR-X image patch on Paris.

Fig. 3: Qualitative results highlight that performances of MERLIN-Seg remain stable when reducing the number of labeled data. A segmentation map close to the

groundtruth label is obtained even with 1% of labeled images, with an accurate reconstruction of building contours. Whatever the number of available labels, the

network restores well the despeckled image. On the contrary, the baseline segmentation collapses: some building are missed and false positive are also detected.

Table 1: Results with λ = 0.5 on EMPRISE simulated dataset

100% 20% 5% 1%

mIoU F1 Acc mIoU F1 Acc mIoU F1 Acc mIoU F1 Acc

Baseline 0.710 0.803 0.974 0.674 0.758 0.969 0.551 0.669 0.952 0.195 0.299 0.897

MERLIN-Seg 0.711 0.799 0.976 0.707 0.794 0.976 0.680 0.781 0.971 0.634 0.745 0.965

the baseline when 100% of labels are available with 0.71 mIoU

achieved by both methods. MERLIN-Seg performances are sta-

ble even when only 1% labels are used for training. In this case,

MERLIN-Seg yields 0.63 mIoU and 0.75 F1 score while the

fully supervised baseline performances collapse with only 0.20

mIoU and 0.30 F1 score. On real data, the same behavior can

be observed and is summarized in table 2. In this configura-

tion, MERLIN-Seg slightly outperforms the supervised base-

line when all the labels are available showing 0.76 against 0.75

mIoU for the baseline. The model trained with the MERLIN-

Seg strategy is particularly stable as the performance drops are

limited to 0.01 both for mIoU and F1 score. The fully super-

vised model shows a drop up to 0.12 mIoU and 0.08 F1 score

and is outperformed by MERLIN-Seg with about 0.12 mIoU

and 0.1 F1 score. Quantitative evaluation is confirmed by vi-

sual inspection of the results (Fig.3).

While the role of despeckling is to learn semantically mean-

ingful features for downstream segmentation and we are not

interested in its performances, it is worth to point out that

high quality restoration is achieved on both EMPRISE and

TerraSAR-X images. No residual speckle fluctuations seem to

be left in the restored image, which is finely restored. We can-

not provide a quantitative evaluation on SAR despeckling as the

groundtruth is not available.

4.3. Ablation study

In this part, we analyze different aspect of MERLIN-Seg.



Table 2: Results with λ = 0.5 on TerraSAR-X dataset

100% 20% 5% 1%

mIoU F1 Acc mIoU F1 Acc mIoU F1 Acc mIoU F1 Acc

Baseline 0.748 0.832 0.874 0.746 0.831 0.873 0.714 0.806 0.847 0.633 0.750 0.790

MERLIN-Seg 0.765 0.844 0.886 0.760 0.840 0.882 0.760 0.840 0.883 0.756 0.838 0.882

Features aggregation MERLIN processes separately the real

and the imaginary parts for the despeckling task, due to their

independence. A naive extension of MERLIN would consist in

providing to the segmentation head only the feature maps esti-

mated from the real part (resp. the imaginary part) and keep the

imaginary part (resp. the real part) to supervise the despeckling

task. In this configuration, the segmentation task only rely on

a partial information and the performances are even below the

baseline for all metrics on pure segmentation (λ = 0): see ta-

ble 3, second row. To incorporate the information of both real

and imaginary parts for downstream segmentation, two strate-

gies are considered. The feature maps are computed for both

real and imaginary parts. Then, they can be aggreated either

by concatenated them, or by doing features average. While real

and imaginary parts remain separated for despeckling, they can

be both exploited for segmentation. The two aggregation strate-

gies have proved to be effective as they outperform the baseline.

We choose to keep the average as it shows to be slighlty more

efficient and it requires less training parameters.

Table 3: Results on EMPRISE dataset when setting λ = 0. MERLIN-Seg with

features mean shows higher performances than the other strategies on building

footprint segmentation.

IoU F1 Accuracy

Baseline 0.710 0.803 0.974

MERLIN-Seg
0.671 0.750 0.970

(w/o aggregation)

MERLIN-Seg
0.713 0.805 0.975

(w/ concatenation)

MERLIN-Seg
0.713 0.806 0.975

(w/ mean)

The impact of λ The value of the λ parameter directly impact

the relative importance of the denoising and segmentation tasks.

This tuning would depend on the proportion of annotated data

but one would expect the performances to be sufficiently stable

with respect to λ to avoid painful hand-tuning. Table 4 shows

the performances of the segmentation task for different values

of λ in the context where only 1% of labels are available. The

performances achieved by MERLIN-Seg are quite stable for λ

values samples from 0.1 to 0.9 and the best regime is obtained

for λ = 0.5 which gives a practical rull of thumb.

It is fundamental to observe the particular case of λ = 0. A

drastic drop of performances occurs if self-supervised despeck-

ling is not applied. This result strongly supports our thesis:

given the same network architecture, the joint learning of seg-

mentation and self-supervised despeckling (λ , 0) is highly

beneficial w.r.t. a fully supervised training on segmentation

only (λ = 0).

Table 4: Results on EMPRISE building footprint dataset when varying λ. The

label percentage is fixed to 1% for all experiments.

MERLIN-Seg IoU F1 Accuracy

λ = 0 0.263 0.382 0.899

λ = 0.1 0.600 0.715 0.959

λ = 0.2 0.589 0.704 0.960

λ = 0.5 0.634 0.745 0.965

λ = 0.7 0.628 0.744 0.964

λ = 0.9 0.607 0.727 0.960

End-to-end vs. Fine-tuning We compare the proposed joint

learning strategy with a fully SSL pre-training approach: once

the network is pre-trained on self-supervised despeckling, its



weights are frozen and the feature maps are fed to the seg-

mentation head to be fine-tuned on labeled data. We refer

to this strategy as sequential approach. In this training con-

figuration, we employ the same network as in MERLIN-Seg.

The quantitative evaluation reported in table 5 allows to say

while self-supervised pre-training learns semantically meaning-

ful features, showing good segmentation performances of build-

ing footprint segmentation when only 1% of the EMPRISE

dataset is annotated, the sequential approach is outperformed

by MERLIN-Seg. From this experiments we conclude that de-

speckling is a relevant task for SSL pre-training, although an

end-to-end semi-supervised learning is still preferable.

Table 5: Results of sequential approach (fine-tuning) versus MERLIN-Seg

(end-to-end) on EMPRISE building footprint dataset. The label percentage is

fixed to 1% and for MERLIN-Seg we set λ = 0.5.

IoU F1 Accuracy

Sequential 0.422 0.556 0.930

MERLIN-Seg 0.634 0.745 0.965

5. Conclusion

We have shown that self-supervised despeckling extract se-

mantically meaningful features of SAR images for downstream

segmentation task. The segmentation task benefits from de-

speckling, especially when few annotated samples are avail-

able: the features learned on despeckling guide segmentation,

making the learning of the segmentation task easier.

In contrast to classical contrastive learning frameworks, our

approach does not require to apply any augmentation to the

data. Indeed, the speckle is seen as an intrinsic augmentation

of SAR images and our model is trained to recover the speckle-

free image in a self-supervised fashion.

While our experiments have been conducted on a U-shaped

model, MERLIN-Seg is model agnostic and it can thus profit

from the most performing networks for image segmentation.

Moreover, its performances can be improved by resorting to

additional input information, may it be multi-modal (e.g. mul-

tispectral images (Bergamasco et al., 2023)) and/or multi-

temporal (e.g. SAR time series (Meraoumia et al., 2023)): the 

network would extract richer semantic information from the ex-

tra input to better despeckle SAR images, thus facilitating the 

downstream task.
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Grill, J.B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E.,

Doersch, C., Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., et al., 2020.

Bootstrap your own latent-a new approach to self-supervised learning. Ad-

vances in neural information processing systems 33, 21271–21284.

Komodakis, N., Gidaris, S., 2018. Unsupervised representation learning by

predicting image rotations, in: International conference on learning repre-

sentations (ICLR).

Krull, A., Buchholz, T.O., Jug, F., 2019. Noise2void-learning denoising from

single noisy images, in: Proceedings of the IEEE/CVF conference on com-

puter vision and pattern recognition, pp. 2129–2137.

Laine, S., Aila, T., 2017. Temporal ensembling for semi-supervised learning,

in: International Conference on Learning Representations. URL: https:

//openreview.net/forum?id=BJ6oOfqge.

Laine, S., Karras, T., Lehtinen, J., Aila, T., 2019. High-quality self-supervised

deep image denoising. Advances in Neural Information Processing Systems

32.

Lapini, A., Bianchi, T., Argenti, F., Alparone, L., 2013. Blind speckle decor-

relation for sar image despeckling. IEEE transactions on geoscience and

remote sensing 52, 1044–1058.

Larsson, G., Maire, M., Shakhnarovich, G., 2017. Colorization as a proxy

task for visual understanding, in: Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 6874–6883.

Le-Khac, P.H., Healy, G., Smeaton, A.F., 2020. Contrastive representation

learning: A framework and review. Ieee Access 8, 193907–193934.

Lee, K., Jeong, W.K., 2022. Noise2kernel: Adaptive self-supervised blind de-

noising using a dilated convolutional kernel architecture. Sensors 22, 4255.

Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras, T., Aittala, M.,

Aila, T., 2018. Noise2noise: Learning image restoration without clean data,

in: International Conference on Machine Learning, PMLR. pp. 2965–2974.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B., 2021.

Swin transformer: Hierarchical vision transformer using shifted windows.

International Conference on Computer Vision (ICCV) .

Meraoumia, I., Dalsasso, E., Denis, L., Abergel, R., Tupin, F., 2023. Multitem-

poral speckle reduction with self-supervised deep neural networks. IEEE

Transactions on Geoscience and Remote Sensing 61, 1–14.

Miyato, T., Maeda, S.i., Koyama, M., Ishii, S., 2018. Virtual adversarial train-

ing: a regularization method for supervised and semi-supervised learning.

IEEE transactions on pattern analysis and machine intelligence 41, 1979–

1993.

Noroozi, M., Favaro, P., 2016. Unsupervised learning of visual representa-

tions by solving jigsaw puzzles, in: Computer Vision–ECCV 2016: 14th

European Conference, Amsterdam, The Netherlands, October 11-14, 2016,

Proceedings, Part VI, Springer. pp. 69–84.

Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A., 2016. Con-

text encoders: Feature learning by inpainting, in: Proceedings of the IEEE

conference on computer vision and pattern recognition, pp. 2536–2544.

Ren, B., Zhao, Y., Hou, B., Chanussot, J., Jiao, L., 2021. A mutual information-

based self-supervised learning model for polsar land cover classification.

IEEE Transactions on Geoscience and Remote Sensing 59, 9224–9237.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks

for biomedical image segmentation, in: Medical Image Computing and

Computer-Assisted Intervention–MICCAI 2015: 18th International Con-

ference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18,

Springer. pp. 234–241.

Scheibenreif, L., Hanna, J., Mommert, M., Borth, D., 2022. Self-supervised

vision transformers for land-cover segmentation and classification, in: Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR) Workshops, pp. 1422–1431.

Tarvainen, A., Valpola, H., 2017. Mean teachers are better role models: Weight-

averaged consistency targets improve semi-supervised deep learning results.

Advances in neural information processing systems 30.

Themyr, L., Rambour, C., Thome, N., Collins, T., Hostettler, A., 2023. Full

contextual attention for multi-resolution transformers in semantic segmen-

tation, in: Proceedings of the IEEE/CVF Winter Conference on Applications

of Computer Vision (WACV), pp. 3224–3233.

Valpola, H., 2015. From neural pca to deep unsupervised learning, in: Ad-

vances in independent component analysis and learning machines. Elsevier,



pp. 143–171.

Wang, H., Xing, C., Yin, J., Yang, J., 2022a. Land cover classification for

polarimetric sar images based on vision transformer. Remote Sensing 14,

4656.

Wang, Y., Albrecht, C.M., Braham, N.A.A., Mou, L., Zhu, X.X., 2022b. Self-

supervised learning in remote sensing: A review. IEEE Geoscience and Re-

mote Sensing Magazine 10, 213–247. doi:10.1109/MGRS.2022.3198244.

Xian, Y., Schiele, B., Akata, Z., 2017. Zero-shot learning-the good, the bad and

the ugly, in: Proceedings of the IEEE conference on computer vision and

pattern recognition, pp. 4582–4591.

Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J., 2018. Unified perceptual parsing

for scene understanding, in: Proceedings of the European Conference on

Computer Vision (ECCV), pp. 418–434.

Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P., 2021. Seg-

former: Simple and efficient design for semantic segmentation with trans-

formers. arXiv preprint arXiv:2105.15203 .

Xie, Q., Dai, Z., Hovy, E., Luong, T., Le, Q., 2020a. Unsupervised data aug-

mentation for consistency training. Advances in neural information process-

ing systems 33, 6256–6268.

Xie, Q., Luong, M.T., Hovy, E., Le, Q.V., 2020b. Self-training with noisy

student improves imagenet classification, in: Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition, pp. 10687–10698.

Xu, Y., Sun, H., Chen, J., Lei, L., Ji, K., Kuang, G., 2021. Adversarial self-

supervised learning for robust sar target recognition. Remote Sensing 13,

4158.

Zhang, J., Ma, K., 2022. Rethinking the augmentation module in contrastive

learning: Learning hierarchical augmentation invariance with expanded

views, in: Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pp. 16650–16659.

Zhang, S., Wen, Z., Liu, Z., Pan, Q., 2019. Rotation awareness based self-

supervised learning for sar target recognition, in: IGARSS 2019-2019 IEEE

International Geoscience and Remote Sensing Symposium, IEEE. pp. 1378–

1381.

Zheng, X., Kellenberger, B., Gong, R., Hajnsek, I., Tuia, D., 2021. Self-

supervised pretraining and controlled augmentation improve rare wildlife

recognition in uav images, in: Proceedings of the IEEE/CVF International

Conference on Computer Vision, pp. 732–741.

Zhu, X.X., Tuia, D., Mou, L., Xia, G.S., Zhang, L., Xu, F., Fraundorfer, F.,

2017. Deep learning in remote sensing: A comprehensive review and list of

resources. IEEE geoscience and remote sensing magazine 5, 8–36.




