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A. MANTRA Model
A.1. Learning Scheme

We show here that the loss function `(xi,yi) (Eq. (4) of
the submitted paper) is an upper bound of ∆(ŷ,yi), where
xi is the input, yi is the ground truth, and ŷ the predicted
output.

Proof:

ŷ = arg max
y∈Y

Dw(xi,y) (1)

∆(ŷ,yi) ≤ ∆(ŷ,yi) +Dw(xi, ŷ)−Dw(xi,yi)︸ ︷︷ ︸
≥0

(2)

≤ max
y∈Y

[
∆(y,yi)+Dw(xi,y)−Dw(xi,yi)

]
(3)

≤ `(xi,yi) (4)

This proves that `(xi,yi) is an upper bound of ∆(ŷ,yi).

A.2. Optimization

A.2.1 1-Slack Dual Formulation

First we write the Lagrangian of primal formulation (Eq. (6)
of the submitted paper)

L(w, ξ, α) =
1

2
‖w‖2 + Cξ − α′ξ (5)

−
∑

ȳ∈YN

αȳ

(
ξ− 1

N

N∑
i=1

∆(ŷi,yi)+Dw(xi, ŷi)−Dw(xi,yi)

)

where α′ ≥ 0 and ∀ȳ = (ŷ1, . . . , ŷN ) ∈ YN , αȳ ≥ 0.
Then, we differentiate the constraints with respect to the
primal variables:

∇wL(w, ξ, α) = w (6)

+
∑

ȳ∈YN

αȳ
1

N

N∑
i=1

∇wDw(xi, ŷi)−∇wDw(xi,yi)

= 0 (7)

The equation of w with dual variables is:

w = −
∑

ȳ∈YN

αȳ
1

N

N∑
i=1

∇wDw(xi, ŷi)−∇wDw(xi,yi)

(8)

∂L(w, ξ, α)

∂ξ
= C − α′ −

∑
ȳ∈YN

αȳ = 0 (9)

This differentiation gives a condition on the sum of dual
variables:

0 ≤
∑

ȳ∈YN

αȳ ≤ C (10)

Dual formulation Applying the Eq. (8,9), in the La-
grangian (Eq. (6)), the dual formulation of the optimization
problem (Eq. (6) of the submitted paper) is

D(α) =
1

2
‖w‖2 (11)

+
∑

ȳ∈YN

αȳ
1

N

N∑
i=1

∆(ŷi,yi) +Dw(xi, ŷi)−Dw(xi,yi)

=
1

2

〈
w,−

∑
ȳ∈YN

αȳ
1

N

N∑
i=1

∇wDw(xi, ŷi)−∇wDw(xi,yi)

〉
(12)

+
∑

ȳ∈YN

αȳ
1

N

N∑
i=1

∆(ŷi,yi) +Dw(xi, ŷi)−Dw(xi,yi)

= −1

2

∑
ȳ∈YN

αȳ
1

N

N∑
i=1

〈w,∇wDw(xi, ŷi)−∇wDw(xi,yi)〉

(13)

+
∑

ȳ∈YN

αȳ
1

N

N∑
i=1

(∆(ŷi,yi) + 〈w,∇wDw(xi, ŷi)

−∇wDw(xi,yi)〉)
(14)

1



=
∑

ȳ∈YN

αȳ
1

N

N∑
i=1

∆(ŷi,yi) (15)

+
1

2

∑
ȳ∈YN

αȳ
1

N

N∑
i=1

〈w,∇wDw(xi, ŷi)−∇wDw(xi,yi)〉

=
∑

ȳ∈YN

αȳ
1

N

N∑
i=1

∆(ŷi,yi) (16)

− 1

2

〈
w,−

∑
ȳ∈YN

αȳ
1

N

N∑
i=1

∇wDw(xi, ŷi)−∇wDw(xi,yi)

〉

The Eq. (16) can be rewritten in the standard formulation

αT c− 1

2
αTHα (17)

where ∀ȳ, ȳ′ ∈ YN Hȳȳ′ = 〈g(ȳ), g(ȳ′)〉 with

g(ȳ) = − 1

N

N∑
i=1

∇wDw(xi, ŷi)−∇wDw(xi,yi) (18)

and cȳ = 1
N

∑N
i=1 ∆(yi, ŷi)

We solve the QP problem, with an interior-point opti-
mizer, as in [1].

A.2.2 Detailed MANTRA Algorithm

Gradient computation We give the computation of the
gradient of ∇w`w required in Algrithm 1 of the submitted
paper (Line 13):

∇w`w(xi,yi) = ∇wDw(xi, ŷ)−∇wDw(xi,yi) (19)

where

∇wDw(xi, ŷ) = Ψ(xi, ŷ,h
+
i,ŷ) + Ψ(xi, ŷ,h

−
i,ŷ) (20)

B. Ranking Instantiation
B.1. Proof of Lemma 1

First, we remind the joint feature map used in section 4.2
of the submitted paper:

Ψ(x,y,h)=
1

|P||N |
∑
xi∈P

∑
xj∈N

yij(Φ(xi, hi,j)−Φ(xj , hj,i))

(21)

In this section, we prove that Dw(x,y) can be re-written
as a supervised feature map, where the score of each exam-
ple xi is 〈w,Φ+

−(xi)〉.

Given an input x, and an output y and a weight vector
w, we have:

Dw(x,y)=max
h∈H
〈w,Ψ(x,y,h)〉+ min

h′∈H
〈w,Ψ(x,y,h′)〉

= max
h∈H

1

|P||N |
∑
xi∈P

∑
xj∈N

yij(〈w,Φ(xi, hi,j)〉−〈w,Φ(xj , hj,i)〉)

+ min
h′∈H

1

|P||N |
∑
xi∈P

∑
xj∈N

yij(〈w,Φ(xi, h
′
i,j)〉−〈w,Φ(xj , h

′
j,i)〉)

(22)

=
1

|P||N |
∑
xi∈P

∑
xj∈N

max
(hi,hj)∈Hi×Hj

yij(〈w,Φ(xi, hi)〉−〈w,Φ(xj , hj)〉)

+
1

|P||N |
∑
xi∈P

∑
xj∈N

min
(h′

i,h
′
j)∈Hi×Hj

yij(〈w,Φ(xi, h
′
i)〉−〈w,Φ(xj , h

′
j)〉)

(23)

With the definition of the latent variable and the joint
feature, the maximization (resp. minimization) over the la-
tent variables can be decomposed for each term of the sum.
So maximizing (resp. minimizing) the sum is equivalent to
maximize (resp. minimize) each term of the sum indepen-
dently, because the latent variable h can be decomposed for
each term of the sum and each couple of latent variables
(hi,j , hj,i) is independent.

Now, the 2 sums are grouped in a single sum:
1

|P||N |
∑
xi∈P

∑
xj∈N

max
(hi,hj)∈Hi×Hj

yij(〈w,Φ(xi, hi)〉−〈w,Φ(xj , hj)〉)

+
1

|P||N |
∑
xi∈P

∑
xj∈N

min
(h′

i,h
′
j)∈Hi×Hj

yij(〈w,Φ(xi, h
′
i)〉−〈w,Φ(xj , h

′
j)〉)

(24)

=
1

|P||N |
∑
xi∈P

∑
xj∈N

(
max

(hi,hj)∈Hi×Hj

yij(〈w,Φ(xi, hi)〉−〈w,Φ(xj , hj)〉)

+ min
(h′

i,h
′
j)∈Hi×Hj

yij(〈w,Φ(xi, h
′
i)〉−〈w,Φ(xj , h

′
j)〉)
)

(25)

We define A(x,y) =

1

|P||N |
∑
xi∈P

∑
xj∈N

(
max

(hi,hj)∈Hi×Hj

yij(〈w,Φ(xi, hi)〉−〈w,Φ(xj , hj)〉)

+ min
(h′

i,h
′
j)∈Hi×Hj

yij(〈w,Φ(xi, h
′
i)〉−〈w,Φ(xj , h

′
j)〉)
)

(26)

By construction, we have the equality A(x,y) =
Dw(x,y). Now, we show that the latent variables can be
fixed independently to the ranking matrix y. For a couple
of examples (xi, xj), with xi ∈ P, xj ∈ N , we analyze
the value of the latent variables hi, hj , h′i, h

′
j with respect

to yij . There is only 2 cases to analyze: yij = 1 and
yij = −1.



If yij = 1

max
(hi,hj)∈Hi×Hj

(〈w,Φ(xi, hi)〉−〈w,Φ(xj , hj)〉) (27)

+ min
(h′

i,h
′
j)∈Hi×Hj

(〈w,Φ(xi, h
′
i)〉−〈w,Φ(xj , h

′
j)〉)

= 〈w,Φ(xi, h
+
i )〉 − 〈w,Φ(xj , h

−
j )〉 (28)

+ 〈w,Φ(xi, h
−
i )〉 − 〈w,Φ(xj , h

+
j )〉

= 〈w,Φ(xi, h
+
i )+Φ(xi, h

−
i )〉−〈w,Φ(xj , h

+
j )+Φ(xj , h

−
j )〉

(29)

= 〈w,Φ+
−(xi)〉 − 〈w,Φ+

−(xj)〉 (30)

where Φ+
−(xi) = Φ(xi, h

+
i ) + Φ(xi, h

−
i ) (31)

h+
i = arg max

h∈Hi

〈w,Φ(xi, h)〉 (32)

h−i = arg min
h∈Hi

〈w,Φ(xi, h)〉 (33)

If yij = −1

max
(hi,hj)∈Hi×Hj

− (〈w,Φ(xi, hi)〉−〈w,Φ(xj , hj)〉) (34)

+ min
(h′

i,h
′
j)∈Hi×Hj

− (〈w,Φ(xi, h
′
i)〉−〈w,Φ(xj , h

′
j)〉)

= max
(hi,hj)∈Hi×Hj

(〈w,Φ(xj , hj)〉−〈w,Φ(xi, hi)〉) (35)

+ min
(h′

i,h
′
j)∈Hi×Hj

(〈w,Φ(xj , h
′
j)〉−〈w,Φ(xi, h

′
i)〉)

= 〈w,Φ(xj , h
+
j )〉 − 〈w,Φ(xi, h

−
i )〉 (36)

+ 〈w,Φ(xj , h
−
j )〉 − 〈w,Φ(xi, h

+
i )〉

= −(〈w,Φ+
−(xi)〉 − 〈w,Φ+

−(xj)〉) (37)

We notice that the predicted latent variables are the same
in the two cases. So the latent variables can be fixed inde-
pendently to the value of yij .

max
(hi,hj)∈Hi×Hj

yij(〈w,Φ(xi, hi)〉−〈w,Φ(xj , hj)〉) (38)

+ min
(h′

i,h
′
j)∈Hi×Hj

yij(〈w,Φ(xi, h
′
i)〉−〈w,Φ(xj , h

′
j)〉)

= yij(〈w,Φ+
−(xi)〉 − 〈w,Φ+

−(xj)〉)

When the latent variables are fixed, each example xi can
be represented by Φ+

−(xi), and A(x,y) can be written as
follow:

A(x,y)=
1

|P||N |
∑
xi∈P

∑
xj∈N

yij(〈w,Φ+
−(xi)〉−〈w,Φ+

−(xj)〉)

(39)

SoDw(x,y) can be written as a supervised feature map,
where the latent are fixed independently to the ranking ma-
trix y, and each example xi is represented by Φ+

−(xi).

B.2. Complexity Analysis

In this section, we analyze the complexity of inference
and loss-augmented inference for ranking instantiation (sec-
tion 4.2 of the submitted paper). We define h̄ as the average
number of regions per images.

Inference The inference complexity with MANTRA is
O(Nh̄d + N logN), where the first term is the complex-
ity to infer exhaustively the latent variables and the second
term is the complexity of the sort.

Loss-augmented inference To solve loss-augmented in-
ference with AP loss, we use the algorithm proposed by
[2]. With this algorithm, the complexity of loss-augmented
inference for MANTRA is O(Nh̄d + N logN + |P||N |),
where the third term is the complexity to rank negative ex-
amples.

C. Experiments

C.1. Multi-class experiments

Datasets First, we detail here the evaluation protocol for
the 4 databases (15-Scene, PPMI, MIT 67 Indoor Scenes,
UIUC-Sports) used in Section 5.1 of the submitted paper.
For 15-Scene (resp. UIUC-Sports), with 4485 (resp. 1574)
images in total, 100 (resp. 70) examples for each class are
randomly sampled for training, the remainder (resp. 60)
being used for testing. As commonly done, we randomly
sample the train/test folds 5 times and report the mean ac-
curacy over the 5 runs. For MIT67 (resp. PPMI), we used
the pre-defined split of the data, with 80 (resp. 100) training
images and 20 (resp. 100) testing images for each category.
The number of categories for UIUC Sports (resp. 15 Scene,
PPMI, MIT67) is 8 (resp. 15, 24, 67). The evaluation metric
in all datasets is the multi-class accuracy.

Results Table 1 (resp. Table 2) gives the values of Fig-
ure 2 (resp. 3) of the submitted paper. Figure 1 shows
the training time results for 15 Scene and PPMI. For 15
Scene and MIT67, the results for scale 100% slightly differ
from [3], mainly because [3] uses a non-standard evalua-
tion protocol. [4] proposes a method to learn discriminative
and shareable features (DSFL). Results are from 10 to 20
pt below our results, and also below the deep features base-
line. Authors only show good results when they combine
with deep features, but always lower than our results. As
they claim complementarity between DSFL and deep fea-
tures, we tried to combine DSFL with MANTRA. We have
re-implemented the DSFL method, but we could not repli-
cate their combination results. The authors did not answer
our e-mails and source code has still not been released. So,



Scale 100 90 80 70 60 50 40 30
UIUC-Sports 94.4 ± 0.7 95.7 ± 0.7 96.4 ± 0.7 96.2 ± 0.6 95.8 ± 0.4 95.6 ± 0.6 94.5 ± 0.5 93.2 ± 1
15 Scene 90.7 ± 0.5 91.7 ± 0.2 92.2 ± 0.3 91.2 ± 0.2 90.7 ± 0.3 88.9 ± 0.3 85.4 ± 1 80.7 ± 0.7
PPMI 54.5 56.1 56.9 58.6 58.9 59.2 54.7 51.0
MIT67 69.9 71.8 72.6 72.1 71 66.4 63 56.4

Table 1. Performances of MANTRA for the different scales.

we did not consider DSFL in our submission as an option
for comparison and further combination.

Scale 90 80 70 60 50 40 30
Regions 4 9 16 25 36 49 64
UIUC 5 11 18 27 37 47 61
15 Scene 48 92 203 287 434 641 843
PPMI 187 495 705 1058 1632 1697 2593
MIT67 2749 6443 11200 16356 24029 31705 41805

Table 2. Time computation (in seconds). The second row (regions)
is the number of regions per image

15 Scene PPMI

Figure 1. MANTRA training time (seconds) vs number of region
per image (seconds - values are reported in Table 2)

Visual results In Figure 2 (resp. Figure 3, Figure 4), we
show visual results on UIUC-Sports (resp. MIT67 and 15
Scene) dataset. We show prediction maps and (h+,h−)
regions, for different classifiers. For instance, when classi-
fying a snowboard image (Figure 2, last row), the model
learns that the detection of snow supports the absence of
other categories, e.g. polo, bocce, or croquet. For the cor-
rect class, the incorporation of h− prevents from having
large negative values for any (random) window, thus h− can
be regarded as a regularizer on the latent space exploiting
contextual information. The fourth row of Figure 2 shows
the prediction of sailing and rowing categories for a sailing
image. For each classifier, h+ corresponds to discrimina-
tive parts, i.e. boat with sail and water. The h− region for
the rowing classifier focuses on the sail of the boat with a
very low score. It suggests that if a sail is found, the im-
age is very unlikely to belong to the class rowing. Another
example is the greenhouse image of MIT67 (second row
of Figure 3), where both greenhouse and florist classifiers
have high scores and focus on plants. For the greenhouse
classifier, h−greenhouse has a quite high score (+0.8), so all

regions are discriminative for it. This is in stark contrast
to the florist classifier, for which h−florist has a very low
score (−0.9): it thus finds clear evidence of the absence
of the florist category. For classifiers of un-correlated cate-
gories like laboratorywet, all regions have very low scores
(< −0.9).

In Figures 2, 3, 4, we can point out other examples of
fine-grained classification problems, where wrong classi-
fiers can have large scores on local regions, which are, how-
ever, compensated by very strong evidence of the absence
of the class: croquet vs bocce in Figure 2 (UIUC-Sports),
closet vs clothing store and book store vs library in Figure 3
(MIT67), street vs inside city or highway and tall building
vs inside city in Figure 4 (15 Scene).



model of ground truth class models of incorrect class

croquet badminton bocce snowboard

polo badminton croquet rowing

rowing badminton croquet sailing

sailing badminton bocce rowing

snowboard bocce croquet polo

Figure 2. Example of response map for UIUC-Sports images and for model of the correct class (left column) and models of incorrect class.
For each model, the red (resp. blue) bounding box show the region with the maximum (resp. minimum) score.



model of ground truth class models of incorrect class

closet clothing store greenhouse grocery store

greenhouse florist laboratory wet warehouse

cloister children room church inside laboratorywet

book store bathroom library museum

warehouse corridor elevator greenhouse

Figure 3. Example of response map for MIT67 images and for model of the correct class (left column) and models of incorrect class. For
each model, the red (resp. blue) bounding box show the region with the maximum (resp. minimum) score.



model of ground truth class models of incorrect class

coast forest open country street

street highway inside city open country

highway forest open country street

tall building coast inside city office

Figure 4. Example of response map for 15 Scene images and for model of the correct class (left column) and models of incorrect class. For
each model, the red (resp. blue) bounding box show the region with the maximum (resp. minimum) score.



C.2. Ranking Results on VOC 2011 Action

In this section, we details the ranking and detection per-
formances. In Table 3, ranking performances are reported
for the 5 splits. The paired T-test between LAPSVM and
MANTRA-AP ranking performances is 8.98, so the dif-
ference is significant with a risk of 0.1% (critical value is
8.6101). We also measure the detection performances on
the testing set, by computing the average overlap (inter-
section over union) between the predicted region and the
ground truth bounding box of the person. Table 4 pro-
vides detection performances. The paired T-test between
LAPSVM and MANTRA-AP detection performances is
9.48, so the difference is significant with a risk of 0.1%.

Split 1 2 3 4 5
LSSVM-Acc 28,4 28.6 29.5 25.9 28.8
MANTRA-Acc 37.0 36.4 32.6 33.7 36.2
LAPSVM 37.8 36.4 37.3 35.4 36.7
MANTRA-AP 44.1 41.6 40.5 41.6 43.1

Table 3. Ranking: Mean Average Precision on VOC 2011 Action
Classification dataset for the 5 splits.

Split 1 2 3 4 5
LSSVM-Acc 12.5 12.9 12.6 12.8 12.7
MANTRA-Acc 19.2 18.7 19.3 19 18.4
LAPSVM 19.2 19.6 20.9 20.8 20.2
MANTRA-AP 26 25.7 24.8 28 28

Table 4. Detection: mean overlap on VOC 2011 Action Classifica-
tion dataset for the 5 splits.
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