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Abstract—In this paper, we propose a hybrid architecture that
combines the image modeling strengths of the Bag of Words
framework with the representational power and adaptability of
learning deep architectures. Local gradient-based descriptors,
such as SIFT, are encoded via a hierarchical coding scheme
composed of spatial aggregating restricted Boltzmann machines
(RBM). For each coding layer, we regularize the RBM by
encouraging representations to fit both sparse and selective
distributions. Supervised fine-tuning is used to enhance the
quality of the visual representation for the categorization task.
We performed a thorough experimental evaluation using three
image categorization datasets. The hierarchical coding scheme
achieved competitive categorization accuracies of 79.7% and
86.4% on the Caltech-101 and 15-Scenes datasets, respectively.
The visual representations learned are compact and the model’s
inference is fast, as compared to sparse coding methods. The
low-level representations of descriptors that were learned using
this method result in generic features that we empirically found
to be transferrable between different image datasets. Further
analysis reveal the significance of supervised fine-tuning when
the architecture has two layer of representations as opposed to
a single layer.

Index Terms—Computer Vision, Image Categorization, Hier-
archical Visual Architecture, Bag-of-Words (BoW) Framework,
Sparse Feature Coding, Dictionary Learning, Restricted Boltz-
mann Machine (RBM), Deep Learning, Transfer Learning

I. INTRODUCTION

NE key challenge in computer vision is the problem of

image categorization, which involves predicting seman-
tic categories, such as scenes or objects, from the raw pixels
of images. While the solution to bridge this semantic gap
remains elusive, promising developments have been proposed
that stride towards this goal.

In the last decade, Bag of Words (BoW) frameworks [1]
have achieved good classification performances on many ob-
ject and scene image data sets. It consists of four major
steps (Fig. 1), namely: 1) descriptor extraction, 2) feature
coding, 3) spatial pooling and 4) SVM classification, to
classify an image into its semantic category. In a typical setup,
gradient-based local image descriptors, such as scale-invariant
feature transform (SIFT) [2] and histogram of orientated
gradients (HOG) [3], are used to describe an image. They
are discriminative yet robust to various image degradations.
A common adaptation for image categorization is the use of
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spatial pyramids [4] to integrate spatial information. However,
in the classical formulation, the feature coding step is generally
a fixed and flat single layer operation. The flat structure limits
the representational power of model, while the lack of learning
makes it difficult to adapt to different data.

Recently, in a separate research direction, the convolutional
deep neural network [5] has emerged as a competitive method
for classifying large-scale image datasets with huge amounts
of training data [6]. Due to the depth and plasticity of these
networks, the variety of information it can learn to represent
is extensive. This network is fully-supervised and requires a
lot of labeled training data to perform well and avoid over
fitting. It is not clear that it is able to learn a meaningful
representations for categorizing moderate-sized datasets, with
fewer labeled training examples.

In this paper, we propose a hybrid hierarchical architecture
based on restricted Boltzmann machines (RBM) to encode
SIFT descriptors and provide the vectorial representation for
image categorization. The hybrid architecture merges the com-
plementary strengths of the BoW framework and deep archi-
tectures. In particular, we exploit the modeling power of local
descriptors and spatial pooling of the BoW framework, and
the adaptability and representational power of deep learning.
Table I details the features of our method against other relevant
methods. Our main technical contributions are as follows:

e We extend our previous work on coding SIFT descrip-
tors [7] from a flat operation to a deep architecture. This
exploit the representational power of network depth to
gradually bridge the semantic gap for image categoriza-
tion. To our knowledge, ours is the first deep learning
model using RBMs to encode SIFT descriptors. We also
exploit spatial information by aggregating representations
within our model.

o In contrast to other dictionary learning methods, our
dictionaries are regularized to be jointly sparse and se-
lective based on power-law distributions. Following our
preliminary studies [7], both RBM layers are penalized
with respect to individual visual codewords and their
corresponding input example. The entire hierarchical
visual dictionary is subsequently fine-tuned with deep
supervised signals.

e On both the Caltech-101 and 15-Scene datasets, our hier-
archical architecture achieves competitive categorization
performances among the family of feature coding meth-
ods embedded in a standard BoW framework. Inference
is also faster than sparse coding methods. Our compre-
hensive experimental analyses show the importance of
supervised fine-tuning for hierarchical architectures. We
also analyzed the possibility of transferring shallow and
deep representations across different datasets.
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Fig. 1. A sequence of processes in the Bag of Words framework takes us from the image representation to the category label. The hierarchical visual coding
architecture (gray) is responsible for transforming local features into feature codes.

TABLE I
FEATURE COMPARISON WITH RELATED METHODS

Sparse Our

Properties CRBM [8] CDBN [9] Coding [10] Architecture

SIFT input v v v
Deep v v
Sparse v v
Selective v v v
Supervised v

The rest of this paper is organized as follows. Section II
introduces the evolution of methods for learning deep neural
networks, as well as related work in the BoW framework with
a focus on the feature coding step. We detail our methodology
to construct the hierarchical architecture to model image
descriptors in Section III and our learning algorithm in Sec-
tion IV. In Section V, we present our experimental results
on image categorization together with comprehensive analy-
ses using various experimental datasets. Finally, Section VI
concludes the paper with suggestions of future work.

II. RELATED WORK
A. Learning Deep Architectures for Vision

A hierarchical architecture consists of multiple layers com-
bined as a series of basic operations. The architecture takes
raw input data at the lowest level and processes them via
a sequence of basic computational units until the data is
transformed to a suitable representation in the higher layers.
Multiple layers of distributed coding allows the network to
encode highly varying functions efficiently [11]. When there
are three or more layers exist in the architecture, it is consid-
ered to be deep [12], [13]. The learning of deep architectures
has emerged, as an effective framework for modeling complex
relationships among high-dimensional structured data. It learns
a hierarchy of meaningful representations that carry some in-
trinsic value for classification tasks. As a result, deep learning
methods have been applied to a variety of tasks, in domains
such as vision, audio and language processing.

The current methods for learning deep architectures for
vision is a cumulation of much research over the years.
Neural networks, popularized in the 1980s, revolutionized the
notion of learning from data. In particular, fully-connected
multi-layered perceptrons, having been shown to be universal
approximators, can represent any function with its parame-
ters [14]. However, researchers often have to deal with the

problems of a huge number of parameters and the difficult
non-convex optimization problem. The optimization is even
more tedious for networks that are deep.

To tackle the vision problem, the convolutional neural
network [15], [16] was developed. It is a fully-supervised
multi-layered network with convolution operators in each layer
mapping their inputs to produce a new representation via
a bank of filters. Such a highly adapted hierarchical local
connectivity has the potential to encode structure suitable for
modeling images, such that even with random weights in the
early layer, performance remains impressive [17]. Unsurpris-
ingly, it has produced exceptional performances for specific
image datasets [15], [16]. However, being a fully-supervised
model, learning often gets stuck in local minima and special
care must be given to handle the network depth.

Neural networks are black boxes that are difficult to un-
derstand and train. As such, there was a lost in interest in
the neural networks in the 1990s, as more started to favor
kernel methods, such as the support vector machine (SVM).
SVMs treat the learning problem as a convex optimization
and are easy to train. However, for SVMs to work well,
users need to provide complex handcrafted features or design
suitable kernels for classification. They also have limited
representational power due to its flat architecture.

The problem of training deep neural networks was recently
given a new lease of life with a focus on unsupervised
learning. This emphasis is crucial because there is usually a lot
more unlabeled data compared to labeled ones. The solution
considers each layer as an unsupervised generative gradient-
based module that learns from its input distribution and stacks
them one layer at a time from the bottom-up, in a greedy man-
ner [12], [13], [18]. This makes it scale well to large networks.
It also appears sensible to learn simple representations first and
higher-level abstractions on top of existing lower-level ones.
In place of randomly initialized parameters, this unsupervised
representation forms the initialization — a catalyst to learn
meaningful representations — for the subsequent supervised
discriminative learning phase.

There are three popular methods to learning a network of
fully-connected layers, namely: deep belief networks (DBN),
deep autoencoder, deep sparse coding. The DBN [12], which
greedily stacks layers of restricted Boltzmann machines
(RBM) [19], each trained to minimize an energy function
that maximizes the likelihood of its input distribution. Details
of RBM training is explained in Section IV. Supervision
can be introduced to train the network by running the error
backpropagation algorithm [20], [21] across all layers in a
separate training phase [22]. A similar but simpler architecture
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known as the deep autoencoder, replaces the RBM building
block of the DBN with a two-layer autoencoder network,
which tries to get back the original inputs at its output layer,
hence minimize the input reconstruction error [13], [23]. The
variants of this architecture focus on avoiding trivial solutions,
such as the identity. The input reconstruction error is also used,
though in a slightly different manner, in sparse dictionary
learning [24], which can also be hierarchically stacked to
become a deep network. Sparse dictionary learning has also
gained popularity for encoding image features in vision [25].
To perform sparse coding, we consider a set of input vectors
x € R! and a projection matrix W € R/* containing the set
of J codewords. The optimization attempts to find the vector
of linear projections z € R” that explicitly minimizes the
feature reconstruction error, along with a regularization term
that promotes sparse solutions:

z* = argmin||x — Wz||3 + \|z|1 , (1)

where A\ is a constant and the ¢; norm is often used to
approximate the ¢y, norm, leading to a convex problem for
W given a fixed z, or vice versa.

With the emergence of these foundational deep learning
methods, the computer vision community now have a new
set of tools to apply. Conventional deep learning methods
are fully-connected models, which poses a problem when
scaling up to large images images. Lee et al. [9] exploited
the learning capabilities of the RBM-based DBN and extended
it by adding convolutional and pooling operators to learn to
classify large images from the pixel-level. However, results
fell short of the state-of-the-art performances by variants of
the BoW framework for image classification.

Most recently, convolutional deep neural networks [5]
have recently emerged as the best performing model in the
Large Scale Visual Recognition Challenge using the ImageNet
database [6], a large-scale dataset with 1,000,000 labeled
training images. The network consists of seven learned layers
(five convolutional and two fully-connected) that map image
pixels to the semantic-level. The model is trained in an entirely
supervised manner using stochastic gradient descent with the
backpropagation algorithm. Despite this good performances, it
has to rely on many training examples to perform well and has
not been shown to work as well for moderate-sized dataset,
with relatively fewer labeled data. Another deep architecture
that exploits the KSVD method for learning has also been
shown to perform well for object recognition [26].

In general, the deep learning methods presented perform
extremely well on modeling input data. Here, we exploit the
learning ability and representational power of deep learning
to form a hierarchy of latent representations of gradient-based
SIFT descriptors [2], extracted from local patches in the image.

B. Bag of Words Framework for Image Categorization

The BoW pipeline of four successive modules (Fig. 1)
provides state-of-art results on many image categorization
problems. It describe the image with a robust set of gradient-
based local descriptors, SIFT [2] and HOG [3]. These de-
scriptors are invariant to various image degradations, such as

geometric and photometric transformations, which is essential
when addressing image categorization problems.

A crucial aspect of the BoW framework is the transfor-
mation from the set of local descriptors to a constant-sized
image vector used for classification. Converting the set of
local descriptors into the final vectorial image representation
is performed by a succession of two steps: coding and pooling.
The coding step transforms the input features into a represen-
tation of visual words. Due to visual word ambiguity [27],
this coding step has garnered much attention by those trying
to capture meaningful representations.

A main shortcoming is that coding is generally a fixed
single-layer operation. The flat structure limits the representa-
tional power of the model, while the lack of learning involved
makes kit unable to adapt well to the vision tasks. There is
extensive work studying the coding of local descriptors and
a growing interest in applying machine learning techniques
to improve this process. To tackle the dictionary learning
problem, some groups focus on unsupervised techniques, such
as sparse dictionary learning [10], [25], [28] and restricted
Boltzmann machines (RBM) [8], [29], while others rely on
supervised learning [30], [31], [32], [33], [34].

The sparse dictionary learning method makes it possible
to learn the mapping of input descriptors to sparse rep-
resentations. However, it is a decoder network, where the
sparse coding optimization (Eq. 1) needs to be solved for
every descriptor. This makes inference very slow, especially
when there are many descriptors or when the dictionary
is large. There are various approximations that help reduce
the computational costs, such as limiting the optimization to
within a component of a mixture model [35], using a small
dictionary for sparse coding and another for pooling [28]
or incorporating locality constraints [36]. A more relevant
approach is to learn an encoding-decoder networks [25], in
which an encoder is concurrently learned to avoid performing
the heavy minimization step of Eq. 1 during inference.

Another type of encoder-decoder network is the RBM,
which is faster than traditional sparse coding during inference.
Sohn et al. [8] used Gaussian RBMs to learn representations
from SIFT, but the overall architecture is heavy and difficult
to train. Our previous work focused on manipulating RBM
representations to get desirable representations [37], such
as topographic maps for transformation invariance [38]. We
extended this to a preliminary study that encoded SIFT using
a shallow RBM dictionary within the BoW framework [7].
In Sections IV-A and IV-B, we point out some drawbacks of
existing regularization methods [9] and suggest a method to
regularize RBMs with selectivity and sparsity.

Since unsupervised deep learning forms the initialization
step for supervised learning, it is important to review super-
vised feature coding methods that increase class separation
through discriminative loss functions, such as mutual infor-
mation loss [39]. The methods may be classified with respect
to the scale in which image labels are incorporated. Some
methods directly use a discriminative criterion for each local
descriptor [30], [31]. However, an image label usually does not
propagate to every local portion of the image, so these methods
do not pose the exact image classification problem and are



more likely to suffer from noise. Other methods associate
labels to a spatially-pooled global image statistic [32], [33],
[34]. This information has to be “un-pooled” for dictionary
optimization, making the methods complex and slow. With
deep architectures, it is necessary to implement a supervised
scheme to optimize classification performances (Section IV-C).

In this work, feature coding is done using a hierarchy
of RBMs, with dictionaries learned via a combination of
unsupervised and supervised learning. Our experiments show
that this leads to better higher-level visual representations and
improved image categorization performances.

After coding, the pooling step constructs a vectorial repre-
sentation from the set of local features. To attenuate the loss
of spatial information when aggregating over the image, the
spatial pyramid scheme [4] pools representations from image
regions defined by a multi-resolution spatial grid. Recent work
show that max-pooling outperforms the traditional average-
pooling, especially when linear classifiers are used [34],
[40]. While other work studying the pooling beyond a scalar
value [41], [42], [43], [44] have shown promising results.
However, their representation dimensionality, typical in the
millions, is huge. Some recent work also focus combining
coding and pooling, blurring the lines between the two oper-
ations [45]. In contrast, the representation of our architecture
is compact, even compared to other BoW methods. Finally,
BoW-based methods generally rely on linear support vector
machines (SVM) [46] to solve the classification problem.

III. CONSTRUCTING HIERARCHICAL VISUAL
ARCHITECTURES

The four crucial steps of the BoW framework (Fig. 1)
are namely, the extraction of local descriptors, local feature
coding, spatial pooling to form the image signature and image
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classification using SVMs. In the process, the representation is
transformed from a low-dimensional but high-cardinality rep-
resentation to a single high-dimensional vector that describes
the entire image. This is illustrated in Fig. 2.

The use of SIFT descriptors, spatial pyramidal pooling and
SVM, have been shown to be crucial in producing leading
performances for the BoW frameworks. The image representa-
tion begins with a low-dimensional pixel representation upon
which local descriptors, such as SIFT [2], are extracted to
create a robust and powerful representation. The local de-
scriptors are sampled from the image using a dense, typically
overlapping, sliding window over the image. A feature coding
step maps each descriptor to a mid-level representation, and
is currently the subject of much research that exploit machine
learning techniques. Finally, spatial pyramids [4] with max-
pooling [34] produce a single high-dimensional vector used
to perform classification with linear SVMs. In the rest of this
section, we enhance the feature coding step by introducing
a deep hierarchical coding scheme based on restricted Boltz-
mann machines.

The main objective of this work is to encode powerful local
descriptors, such as SIFT, using a deep hierarchy for image
categorization. This is contrary to other deep networks [5], [9],
[47], [48] that learn representations from pixels. While these
attempts at learning from pixels have resulted in interesting
representations, such as Garbor-like filters [29], [37], image
categorization performances remain below those of the BoW
framework. Our approach is to study the construction of a
hierarchical coding scheme to learn from local descriptors as
a starting point with a greater representational power than raw
pixels. The introduction of hierarchical depth to the feature
coding step is not a trivial one as it may not guarantee
an improvement in categorization performances. We focus
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Fig. 2. The Bag of Words framework map representations from image pixels to low-level descriptors, mid-level visual codes and, eventually, to a high-level
image signature, which is used for categorization. In the hierarchical architecture, the feature dimensionality increases progressively, enhancing the richness
of the representation. Meanwhile, the features are gradually abstracted through the layers and the number of features (i.e. cardinality) over the image space
is reduced. The graph illustrates the relation between dimensionality and cardinality of the representation through the various processes in the framework.
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our approach on the following two aspects of deep feature
coding: 1) encoding SIFT with a regularized shallow RBM
network and 2) constructing the deep architecture to enhance
modeling and representational strengths. This coding step
allows for a gradual mapping of representation to achieve
both feature enhancement and abstraction during the coding
process (Fig. 2). To our knowledge this is the first work on
learning deep representations from descriptors and we are able
to outperform existing shallow feature coding methods and
deep pixel-based methods (see Sec. V-B1).

A. Single-Layer Visual Architecture

The basic component of the hierarchical architecture is the
restricted Boltzmann machine (RBM) [19]. The RBM is a
bipartite Markov random field that consists of an input feature
layer x and coding layer z (Fig. 3(a)). The feature layer
contains I dimensions corresponding to the dimensionality
local image descriptor (i.e. 128 dimensions for SIFT). The
coding layer has J latent units, each representing a visual
codeword. Bias units, zo and 2, are permanently set to one.
The layers are fully-connected between them by an undirected
weight matrix W € RT*/,

Given a single input feature x and a set of weights W, the
coding z; is computed as a feedforward encoding function

fenc(’a )

I
2 = fene(x,W;) =0 (Z wijCCi), )
i=0

where o(-) is the sigmoid transfer function. To handle SIFT
descriptors inputs, the descriptors are first ¢;-normalized so
that each vector sums to a maximum of one, resulting in a
quasi-binary input representation to suit the binary RBM.

Each RBM with 128 input units can be trained to model the
SIFT descriptor (Fig. 3(b)). The SIFT encoding share the same
weights that are tiled across the whole image. Already, the
performance of this simple architecture is comparable to other
leading methods (Sec. V-B1). It is also has faster inference
than sparse-coding-based methods [10], [28], [34], [36], which
require inference-time on reoptimization. With suitable regu-
larization, RBMs can learn interesting representations from
local gradient features [7] (see Sec. V-D1).
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a3 3
£ ©
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(b) SIFT feature encoding

Fig. 3. (a) Structure of the restricted Boltzmann machine (b) A single RBM
layer is used to encode a single SIFT descriptor in a shallow architecture.

B. Constructing a deep feature coding architecture

We now extend the single-layer architecture to a hierarchical
one. In the case of deep fully-connected networks, RBM layers
are stacked in a greedy layer-wise manner to form deep belief
networks [12]. However, this conventional method of stacking
fully-connected layers does not exploit spatial correlations and
may not scale well to larger images. We found experimentally
that for image classification tasks, directly stacking without
taking into account spatial information does not yield desirable
results.

To model the expanded spatial dimensionality in large
images, we look to convolutional neural networks [9], [15],
[16] and biologically inspired models [49], [50], [51], [52]
for inspiration. These models incorporate spatial pooling as
the architecture deepens so that the complexity of features
increases, while the areas of representation over the original
image are enlarged. When representing visual information, we
often consider an object or a scene to be a composite of its
sub-parts. When learning features hierarchies, it is sensible to
perform spatial aggregation, whereby higher-level concepts are
formed by abstracting over the lower-level ones.

The spatial aggregation operation correlates a spatial neigh-
borhood of local codes or features, instead of treating them
as being spatially independent. When this concatenation is
performed at the descriptor level, this more complex feature
becomes a macro feature (MF) [34]. At the higher-levels,
spatial aggregation is done over the mid-level feature codes
of the previous layer to create a macro code. The RBM mod-
els the joint interactions between the descriptive dimensions
of its input layer and their spatial dependencies within the
neighborhood. Spatial aggregation also helps the model adapt
to large images through the abstraction over the image space.

In this work, we greedily stack one additional RBM with
a new set of parameters W(?) that aggregates within a
neighborhood of outputs from the first RBM W (1, The two-
layer architecture for encoding macro features is shown in
Fig. 4.
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Fig. 4. A two-layer hierarchical architecture for coding SIFT-based macro
features to local codes and subsequently to higher-level macro codes.



IV. LEARNING VISUAL REPRESENTATIONS

Each layer in the architecture is trained as a restricted
Boltzmann machine (RBM) [19] (see Fig. 3(a)). The joint
configuration (x,z) of binary activation states in the both
layers of the RBM has an energy given by:

1 J
E(X,Z) = —ZZJEZ‘U}UZ]'. (3)

i=0 j=0
The joint probability of states corresponds to:
exp (—E(x,2))
YoxzeXP (—E(x,2))
The objective of the network is to maximize the probability

of the input data x summed over all possible vectors in the
latent layer z:

P(x,z) =

“4)

25 &XP (—E(x,2))

Plx) = : (5)
( ) Ex,z exp (_E(X7 Z))
Taking the gradient of the log probability yields
0log P(x)
T@‘j = <xi’zj>data - <xizj>model ) 6)

where (-)q;st denotes the expectation under the distribution
dist. The first term consists of data driven activations that
are clamped by the environment, while the model driven
states are sampled from the stationary distribution of a free
running network. However, finding (x;z;),, .., is intractable
as it requires performing infinite iterations of alternating Gibbs
sampling via a symmetric decoder fgec(,-):

J
i = faec(z,W;) =0 Zwijzj . @)
=0

Hinton [53] proposed the contrastive divergence (CD) algo-
rithm, that approximates the stationary distribution with a
small finite number of sampling steps and used to update the
weights by iterating over the training data:

Awij =€ (<mizj>data - <m7:zj>recon) ’ (8)

where ¢ is a small learning rate. To avoid unnecessary sam-
pling noise [54] and reduce the variance of the estimator [55],
we employ Rao-Blackwellization [56].

A. Precise RBM Regularization

Using the maximum-likelihood as the only criteria to dis-
cover the mid-level representations might not be suitable
for the image categorization task. Representations that are
generatively learned with unlabeled image data can be reg-
ularized with inductive biases [57], which are the set of a
priori assumptions about the nature of the target function.
Imposing such prior structure can therefore be of great help
for learning sensible representations for image categorization.
This forms the motivation behind regularizing RBM learning
with an additional term h(z) weighted by X to the optimization
problem:

K
argmin — Z log (Z P(xp, zk)> + Ah(z), (9
w k=1 z
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performed over a training set of K examples.

We previously discovered that the RBM can be precisely
regularized to influence the activation of individual codewords
7 in response to each input example %k by introducing specific
target activations pj; € [0, 1] [37]. The targets can be orga-
nized into a matrix P € R7*X with each row p; representing
the desired activation vector of codeword z; with respect to
the set of K input features, while each column pj denotes the
population code given input k. To regularize the RBM, h(z)
can be defined using the cross-entropy loss:

J K

hz)=-)

j=1k=1

pixlog zjk + (1 — pji) log(1 — z;). (10)

This essentially matches data-sampled activations to target
activations, while maximizing the likelihood of the data. We
can further perceive X target := Tik and Zjk target = Djk
as a sampling from the input and latent target distributions
respectively. After fusing the batch-averaged gradient of the
regularizer, the learning rule of Eq. 8 can now be modified as

Awij = Fy<'rizj>data+ 7]<‘T7:Zj>target7 €<xizj>recon ’ (11)

where 7 is the learning rate of the target distribution and
v=¢e—mn is the modified learning rate of the data distribution
due to the regularization. The derivation of the update rule is
described in the Appendix.

B. Sparse and Selective Regularization

From the regularization method presented in Section IV-A,
we can bias the representations to suit visual coding by
introducing selectivity and sparsity [58]. These coding prop-
erties improve visual information efficiency, memory storage
capacity and pattern discrimination [59], [60]. Sparsity is a
statistic of the population of codewords in response to a single
input example. On the other hand, selectivity describes the
activation of one visual codeword across a set of examples.

Besides having the same mean values, selectivity and
sparsity are uncorrelated [61]. If only a small proportion of
codewords respond to the inputs, the codes are always sparse,
but none of them are selective, making feature discrimination
difficult (Fig. 5(c)). When all codewords are selective to the
same feature instances, sparse codes will not be produced and
discrimination also suffers (Fig. 5(b)). A graphical explanation
of this phenomenon is shown in Fig. 5.
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= n O L] E 1 i il mow .
" ] "
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Fig. 5. Comparing different coding strategies with the activation matrix Z.

(a) A well trained dictionary exhibits both selectivity and sparsity. Activations

have high variance and are uncorrelated. (b) Selective-only coding may cause

many features to be ignored or over represented. (c) Sparse-only coding alone

might lead to codewords that have strong correlation or are silent.
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Some existing work coarsely use the mean activity of a
codeword across examples to regularize RBMs [29], [62]:

K 2

J
hz) =3 o= Do
j=1 k

=1

12)

where p is the desired (usually low) mean codeword activation.
However, each codeword is penalized using a single global
statistic without regard of its selectivity to individual examples,
so the condition could be satisfied even when the codeword
is not selective. Additionally, sparsity is not considered. This
contrasts with methods only encouraging representations to be
sparse [10], [25], [28].!

Our aim is to map an RBM’s input to a latent space
where the variations between input examples are retained,
while encouraging individual latent dimensions to specialize.
We employ the precise RBM regularization (Sec. IV-A) to
induce both sparsity and selectivity, by biasing data-sampled
activations Z € R7*¥ to match appropriate targets P. The
activations across the rows and columns of the P are fitted to
distributions rather than being summarized by their averages.
For every row and column of data-sampled responses z € RY
(Fig. 6(a)), we transform the activations to fit a positively
skewed long-tail target distribution (Fig. 6(c)):

11

Pn = (’I"CL’I’L]C(Zn,Z))“ 5 (13)

where rank(z,,z) performs histogram equalization by sorting
the activations and assigning a value between 0 to 1 based on
the rank of 2, in z, with smallest given a value of 0 and the
largest with 1. The target mean p € (0,1) positively skews
the distribution if p < 0.5.

To obtain targets P that are jointly sparse and selective, we
first map all J rows of K-element vectors to their sparsity
target distribution, followed by all columns for selectivity [7],
[37], [65]. The additional training cost is the time needed
to sort the activation matrix in both dimensions, which is
JlogJ + Klog K. With a distribution based target, some
activations will be pulled up while most will be encouraged to
be lower. This is as opposed to penalizing activations equally
with a mean-based regularization [29], [62].

Our preliminary study using this regularization scheme
yields positive results for learning shallow visual dictionaries
[7]. We now use it to regularize each layer of representation
in our deep architecture using the same distribution-based
technique. The lower-level dictionary models the data in the
same manner as a shallow dictionary [7], while the higher-level
visual dictionary seeks to achieve a sparse and selective rep-
resentation of concatenated mid-level codes (see Sec. III-B).

C. Supervised Fine-Tuning

So far, the training algorithms have focused on unsupervised
learning, yet it is also important for supervised learning to
be introduced. Using top-down discrimination to model the
data is an effective way to approach a classification task.
This is relatively simple for shallow dictionaries, as shown in

IBesides sparsity and selectivity, topographically-organized regulariza-
tion [47], [63], [64] is also a possible (see Goh et al. [38]).

Activation sequence Sorted (ascending) Distribution
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(c) Step 2: Transform vector to fit a long-tailed distribution

0 5 10 15 20 25 35 40

Fig. 6. A succession of two steps transforms a set of data-sampled activations
to their targets. For illustrative purposes, the sequence of latent activations on
the left is sorted in an ascending order of their activation level (middle) and
its histogram is displayed on the right. (a) The original activation sequence
may take the form of any empirical distribution. (b) Step 1 ranks the signals
and scales them between 0 and 1, resulting in a uniform distribution within
that interval. (c) Step 2 maps the ranked signals to fit a predefined long-tailed
distribution to obtain p. Only few target activations are encouraged to be high,
while most are low.

our preliminary study [7], by using the error backpropagation
algorithm [20], [21]. However, in a deep architecture, the
discriminative backpropagated signal diffuses as it travels
down the network, making the optimization problem more
challenging. Similarly, the importance of supervised learning
increases as we stack layers, since the quality of the generative
representations for categorization diminishes at the upper
layers (empirically shown in Table II). A combination of both
bottom-up and top-down learning needs to be performed to
train an effective network. Supervision can be introduced ei-
ther concurrently as a hybrid model [66], or through a separate
fine-tuning phase [12]. In this work, after greedily stacking two
RBMs, the parameters are first fine-tuned through a series of
two steps, first using a combination of bottom-up and top-
down signals [67] and later using error backpropagation.

In the first step, a new “classifier” RBM, with weights w® s
connects the outputs of the second RBM to an output layer
y € RC, with each unit corresponding to a class label c.
This RBM is trained by directly associating the z(?) to target
outputs y:

sz((?')) = E(<Zq;(2)yc>data - <Z§2)yc>recon)~ (14)

Next, all the layers are bound together by using top-down
sampled signals as targets for bottom-up activations [67]. An
initial up-pass generates unbiased samples from the bottom-
up. Starting from the top-most layer, a down-pass then samples
target activations z(") using the biased activations of the layer
(I4+1) above, as follows:

O] fdec(¢(l+1)§(l+1) +(1—¢(l+1))zg¢;?,W(-l+1))7(15)

Zj,target = target j

with ¢(*) being a hyperparameter. Additionally, alternate Gibbs
sampling chains are formed from each paring of layers based



on the “up”-pass activations. The update equation for weights
of layer [ are defined as follows:

J i,data”j,target

(-1

Aw) =y (' e data + 1 thE arger)
—e( J( )

2" recons (16)
where z(®) = x for the first RBM, and z((ii)ta = zgiiget =y
such that the topmost RBM update follows Eq. 14. All RBMs
in the architecture are updated concurrently. This step fine-
tunes the existing hierarchical visual dictionary by introducing
intermediate learning signals between unsupervised learning
and highly discriminative learning in the next step.

In the second visual dictionary fine-tuning step, we used the
discriminative softmax cross-entropy loss to penalize feature-
based classification errors. The errors are then backpropagated
through the three sets of parameters consisting of two layers
of visual dictionaries and one layer of feature-level classifier.

Overall, the training of parameters for the entire BoW
model can be seen in 6 distinct steps, grouped into 3 phases
(Fig. 7). The first phase performs greedy layer-wise unsuper-
vised learning of the two levels of RBM visual dictionaries
from the bottom-up. The second phase uses top-down sampled
activations to fine-tune bottom-up learning. Finally, the third
phase further fine-tunes the visual dictionaries with error back-
propagation and learns a discriminative SVM classifier on the
image-level representations. Inference is a simple feedforward
pass though the BoW pipeline to obtain the category label.

Image Local Local High-level Image Class
pixels descriptors  visual codes  visual codes  signature label
Training: Feature Dictionary
Step 1: tracti i
ep extraction learmng Phase 1:
' l Greedy
Feature Dictionary unsupervised
Step 2: coding learning learning
Feature Top-down
Step 3: coding targeting
Feature Feature Phase 2:
Step 4: coding coding ¢ Top-down
Forward pass:—— Top-down deep learning
Top-down | Top-down %
targeting targeting
Backward puss:~~ \
Feature Feature Category
Step 5: Category coding coding prediction
prediction: — — —‘
Backprop Backprop Backprop Phase 3:
Error Back- | ,fine-tuning | fine-tuning fine-tuning >3:1<€;r1:11is::lﬁve
propagation: lee;rnin
. &
Feature Feature Feature Spatial SVM
Step 6:| extraction coding coding pooling training
Feature Feature Feature Spatial
extraction coding coding pooling
Inference:

Fig. 7. Overall, the parameters of the BoW model are optimized in six steps.
The steps are grouped into three phases: 1) greedy supervised learning, 2) top-
down regularized deeps learning and 3) supervised discriminative learning.
Inference consists of a single feedforward pass through the BoW pipeline.

V. EXPERIMENT RESULTS AND DISCUSSION
A. Experimental Setup

We performed experimental evaluations on object and scene
categorization tasks using the unsupervised and supervised
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variants of the three architectures (Section III) with different
depths (shallow or deep) and input features used (SIFT or
macro features (MF)), as illustrated in Fig. 3(b) and Fig. 4.

1) Image Datasets: We used three datasets for our evalua-
tions - Caltech-101, Caltech-256 and 15-Scenes. The Caltech-
101 dataset [68] contains 9,144 images belonging to 101 object
categories and one background class. There are between 31 to
800 images in each category. The Caltech-256 dataset [69]
extends the original Caltech-101 dataset to 256 object classes
and 30,607 images. The 15-Scenes dataset [4] consists of
4,485 images from 15 different scene categories.

2) Local Feature Extraction: Before feature extraction,
images were resized to fit within a 300 x 300 pixel box,
retaining their original aspect ratios. SIFT descriptors scaled
at 16 x 16 pixels were densely sampled from each image at
8 pixel intervals. Macro features were pooled from 2 x 2 neigh-
borhoods of SIFTs extracted at 4 pixel intervals. This setup
follows that of existing BoW approaches [34]. The SIFT
descriptors were f;-normalized by constraining each vector
to sum to a maximum of one.

3) Dictionary Learning and Evaluation Setup: A set of
200,000 randomly selected feature examples (descriptors or
codes) were used as the training set for unsupervised dictio-
nary learning for each layer. In experimental trial, a number
of the training images per category (15 or 30 for Caltech-101;
30 or 60 for Caltech-256; 100 for 15-Scenes) were randomly
drawn for supervised fine-tuning. The same train-test split was
also used for training the SVM classifier in the final stage of
the BoW framework. The remaining images that were not used
for training were then used for testing and the mean class-wise
accuracies averaged over 10 trials was reported.”

4) Spatial Pyramids and SVM Classification: From the
visual codes produced by each architecture, a three-level
spatial pyramid [4] with max-pooling [34] is used to form the
final image representation based-on the typical pooling grids
of 4x4, 2x2 and 1x 1. Finally, we trained a linear SVM to
perform multi-class classification of the test images.

B. Image Categorization Performance

1) Comparison with Other Methods: At the bottom of
Table II, we present the image categorization results on
the Caltech-101 and 15-Scenes datasets using the different
setups of our architecture — using different input features and
architecture depth, as well as with and without supervised
fine-tuning. Our best image categorization results obtained on
the Caltech-101 dataset were 72.1 &+ 1.3% using 15 training
images and 79.7 + 0.9% with 30 training images. For the
15-Scenes dataset, we obtained a classification accuracy of
86.4 + 0.6%. The best architecture was consistently the deep
supervised dictionary trained on macro feature inputs. These
are competitive results for BoW methods focusing on feature
coding with standard pooling setups. Moreover, performance
was consistently good across both datasets. We also observe
that macro features consistently outperform SIFT descriptors,

2We followed the standard evaluation metric by using all categories (in-
cluding the background) for both training and evaluation. http://www.vision.
caltech.edu/Image_Datasets/Caltech101
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by about 3% on the Caltech-101 dataset and 1.5% for the 15-
Scenes dataset. This difference in performance validates the
results reported by Boureau et al. [34].

In Table II, we compare our results with other feature coding
strategies that follow the same BoW pipeline using only a
single feature type and standard pooling methods. We are
favorably positioned within both unsupervised and supervised
methods. Compared against all other coding-focused schemes,
we achieved the leading results with the supervised deep
architecture. At this juncture, RBM-based method for visual
dictionary learning appear to gain a slight edge over methods
with non-learned assignment coding or sparse coding. RBM-
based methods also have faster inference speeds as compared
to sparse coding methods [10], [34], [36] and a more compact
representation than some coding strategies [28].

Table III presents a comparison with other methods that fo-
cus on other (non-feature-coding) aspects of image categoriza-
tion, such as image modeling. Our architecture significantly
outperforms all recent pixel-based convolutional methods [9],
[47], [72]. The main difference of our hybrid deep architecture
from these methods is that we exploit the BoW framework,
particularly the SIFT descriptors, spatial pyramidal pooling
and SVM classification. This is particularly useful when the
datasets do not have many labelled training examples to learn
from. Additionally, we also utilize supervision during training.

Amongst the other post-feature-coding (pooling and classifi-
cation) methods, the methods by Duchenne et al. [73] and Feng
et al. [74] reported impressive performances on the Caltech-

101 dataset, which are currently the best accuracies on the
dataset. Duchenne et al. [73] used graph matching to encode
the spatial information of representations learned by sparse
coding [34]. Feng et al. [74] build upon LLC sparse codes [36]
to perform pooling in a discriminative manner, using an ¢,
norm aggregation strategy to pool codes in between sum and
max, and combined with a spatial weighting term optimized
for classification. These methods [73], [74] address the image
categorization problem in a completely different direction
as we do. Our deep feature coding method, being easily
incorporated in the BoW framework, may be complementarily
combined with these methods to possibly boost performances.

2) Discussion on Depth and Supervision: The deep su-
pervised architecture produced the best performing visual
dictionary. We discuss the empirical performance of both depth
and supervision, and offer possible explanations of the results.

We begin with the basic shallow unsupervised architecture,
which already bring us close to the state-of-the-art results.
When we stack an additional unsupervised layer, we observe
a consistent fall in the performance. We think that this may be
due to the model deviating from the classification objective as
layers are added — a problem that may exist even with superior
generative learning on the maximum likelihood criterion. It
may not be sensible to increase the architecture’s depth if we
are unable to adapt the entire set of parameters to suit the
eventual image categorization task.

As shown in Table II, classification results improve when
supervised fine-tuning is performed on both the shallow and

TABLE II
PERFORMANCE COMPARISON WITH BOW FEATURE CODING METHODS

. Codebook Caltech-101 15-Scenes

Feature Coding Method Size 5 0w 100 tr.
Non-Learned Coding

Hard assignment [4] 200 56.4 64.6 + 0.8 81.1+£0.3

Kernel codebooks [27] 200 - 64.1 £ 1.5 76.7+£0.4

Soft assignment [70] 1000 - 74.2£0.8 82.7+0.4
Sparse Dictionary Learning and Coding

ScSPM [10] 1024 67.0 0.5 73.2£0.5 80.3 0.9

LLC [36] 2048 65.4 73.4 -

Sparse coding & max-pooling [34] 1024 - 75.7+1.1 84.3+0.5

Sparse spatial coding [71] 1024 69.98 + 0.9 77.59 £ 0.5 -

Multi-way local pooling [28] 1024 %65 - 77.3+£0.6 83.1+0.7
Restricted Boltzmann Machine

Sparse RBM [8] 4096 68.6 74.9 -

CRBM [8] 4096 71.3 77.8 -
Supervised Dictionary Learning

Discriminative sparse coding [34] 2048 - - 85.6 £0.2

LC-KSVD [31] 1024 67.7 73.6 -
Our Architectures (SIFT Feature)

Unsupervised Shallow 2048 66.5 + 1.6 74.7+1.1 84.24+0.9

Supervised Shallow 2048 67.6+1.2 75.6 £1.0 84.3+0.7

Unsupervised Deep 2048 625+ 1.4 69.9+1.2 79.6 £0.5

Supervised Deep 2048 69.3+ 1.1 77.2+0.8 85.2+0.5
Our Architectures (Macro Feature)

Unsupervised Shallow 2048 70.0£1.9 78.0+14 85.2+0.6

Supervised Shallow 2048 71.1+14 79.1+1.3 85.6 £0.5

Unsupervised Deep 2048 65.3 £ 1.5 728 +1.1 82.5+0.6

Supervised Deep 2048 72.1+1.3 79.7+0.9 86.4+ 0.6
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TABLE III
COMPARISON WITH NON-FEATURE-CODING METHODS
Caltech-101
Method RgT 0w
Our Architecture
Supervised Deep (Macro Feature) 72.1+£13 79.7+£0.9
Recent Convolutional Networks
Convolutional Deep Belief Net [9] 57.7+15 654+0.5
Convolutional Neural Network [47] - 66.3 1.5
Deconvolutional Network [72] 586+ 0.7 66.9+1.1
Hierarchical Sparse Coding [48] - 74.0£1.5
Post-Feature-Coding Methods
NBNN [75] 65.0+ 1.1 70.4
NBNN kernel [76] 69.24+0.9 75.2+1.2
Graph-matching kernel [73] 75.3+£0.7 80.3+1.2
GLP [74] 70.3 82.6
SLC [45] 72.7+0.2 81.0+0.2

deep architectures. There is only a slight improvement when
supervision is added to shallow architectures. However, the
gains are particularly large for deep architectures, so much
so that it overcomes the deficit of performance between the
shallow and deep unsupervised architectures. This is perhaps
due to the deep architecture’s intrinsic capacity to encode more
complex representations within the structure, that increases the
chances of class-wise separability. It shows the importance
of supervised fine-tuning, especially for an architecture that
is several layers deep. Ultimately, it was the combination of
supervised fine-tuning, architecture depth and macro features
that delivered the best image categorization scores.

3) Computational Resources: Due to the sparse and se-
lective regularization, the codewords learned encode generic
image structure and tend to be very diverse, resulting in
concise codebooks with few codewords. As a result, our
method remains very competitive even as the codebook size is
reduced. As compared to the best performing method of sparse
coding [28], our final image signature is 32.5 times smaller.
We also use half the number of codeword as compared to the
best RBM-based approach [8]. In both cases, we outperform
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the methods in terms of classification performance.

Feature coding is fast during inference because we exploit
the encoder nature of the trained RBM network. The inference
time is the same, whether supervised or unsupervised, because
we merely perform a two-layer feedforward computation for
each feature to obtain its coding. When implemented, descrip-
tors can be computed concurrently in batches. The advantage
of inference speed is especially significant when compared
against sparse coding methods [10], [34], [36], which have to
run the sparse optimization during inference. Experimentally,
we record an inference speedup of 80 times, relative to the
ScSPM method [10].

C. Shallow and Deep Transfer Learning

1) Between Caltech-101 and Caltech-256: Using a model
with the same complexity as that for the Caltech-101 dataset,
we achieved competitive image categorization performances
on the Caltech-256 dataset, with mean accuracies of 41.5+0.7
and 47.2+0.9, using 30 and 60 training examples respectively.
Due to the similarity between Caltech-101 and Caltech-256,
we attempted to transfer the unsupervised dictionaries learned
using Caltech-101 to classify Caltech-256 images, in the spirit
of self-taught learning [77]. Assuming that unsupervised dic-
tionary learning had been done using the Caltech-101 dataset,
transferring the learned representation reduces the amount of
training time required for the entire deep model Caltech-256
dataset. The results of this study together with results for other
competitive methods are presented in Table IV. The Caltech-
256 dataset is used for supervised fine-tuning where reported.

We found that with a shallow architecture, the unsupervised
dictionary from Caltech-101 essentially performed the same
as that trained from Caltech-256. However, when we stack a
second layer trained using the Caltech-101 datatset, the errors
resulting from the transfer of dictionary become pronounced. If
the first layer is trained with the Caltech-101 dataset, while the
second layer is trained on the Caltech-256 dataset, the results
is again no different from when both layers are trained with the
Caltech-256 dataset. From this, we believe that the first layer
is able to models generic spatially-local dependencies. As we

TABLE IV
PERFORMANCE ON CALTECH-256 FOR SHALLOW AND DEEP TRANSFER LEARNING SETUPS

Method Training set(s) 30 tr. 60 tr.
Layer 1 Layer 2 Unsupervised  Fine-tuned Unsupervised  Fine-tuned

Our Architectures - Standard Shallow & Deep Learning Setups

Shallow Caltech-256 - 41.0+1.0 41.14+0.8 46.1 +£0.9 46.0 = 0.8

Deep Caltech-256  Caltech-256 38.94+0.8 41.5+0.7 44.7+0.8 47.24+0.9
Our Architectures - Transfer Learning Setups

Shallow Caltech-101 - 40.8 £+ 1.1 41.0+1.0 45.8+0.9 45.9+1.0

Deep Caltech-101  Caltech-101 36.5+1.0 38.3£0.9 4144+1.0 44.24+1.0

Deep Caltech-101  Caltech-256 39.6 £0.9 41.7+0.9 44.0+1.1 47.0+1.0
Other Competitive Methods

ScSPM [10] Caltech-256 34.0 40.1

Graph-matching kernel [73] Caltech-256 38.14+0.6 -

LLC [36] Caltech-256 41.2 47.7

CRBM (8] Caltech-256 42.1 47.9

GLP [74] Caltech-256 43.2 -
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spatially aggregate while stacking layers, the representation
becomes more category specific and increase in semantic
value. So, transferring higher-level information from Caltech-
101 deeper into the architecture will not be as useful as
learning directly from the Caltech-256 dataset itself.

2) Between Caltech-101 and 15-Scenes: The same exper-
iment was also performed to study the possibility of trans-
ferring learned representations between datasets of different
natures, objects (Caltech-101) and scenes (15-Scenes) in this
case. The experimental results of the transferring shallow and
deep representations between the two datasets are presented
in Fig. 8, where the labelled data for supervised learning
is obtained from the respective test dataset. The general
observation is similar the previous one between Caltech-101
and Caltech-256, that the deeper the trained representation, the
harder to adapt to another another dataset.

TEST:
15-Scenes _Caltech-101
Unsup: 84.1 Unsup: 74.3
Sup: 84.3 Sup: 75.2 ‘\

TEST:
15-Scenes Caltech-101
Unsup: 83.4 Unsup: 75.1
/ Sup: 83.9 Sup: 75.7

TRAIN: TRAIN:
Caltech-101 15-Scenes,

TRAIN:
Caltech-101

TEST: TEST: TEST: TEST:
15-Scenes Caltech-101 Caltech-101 15-Scenes 15-Scenes Caltech-101
Unsup: 79.6 Unsup: 60.3 Unsup: 69.1 Unsup: 78.5 Unsup: 71.7 Unsup: 69.9
Sup:85.2  Sup:634 Sup: 76.9 Sup: 844 Sup:74.1  Sup:77.2

Fig. 8. Transfer learning results between Caltech-101 and 15-Scenes. Transfer
learning works well when the representation transferred is shallow.

D. Analysis of Visual Dictionary Learning

1) Codeword Visualization: We visualized the codewords
trained on SIFT descriptors extracted from the Caltech-101
dataset [68]. Each codeword is extracted as a filter over the
128-dimension SIFT feature space. Each SIFT descriptor en-
codes quantized gradients (8 bins) within a 4x4 neighborhood
grid. We split the filter into the same spatial grid and assign
to the grid the dominant orientation of the partition, with
a strength proportional to the reconstructed response of the
filter. We assign each of the eight orientations a distinctive
hue, while the intensity shows the local response strength
of a partition. The result of the visualization is shown in
Fig. 9(a), where each square represents a codeword. It is
interesting to observe that the RBM automatically discovers
coherent structure. For many codewords, opposing gradients
are paired and have consistent directions. For example, red-
cyan pairings tend to occur left and right of each other. A
further analysis of the visualization is described in Fig. 9(b),
9(c), 9(d) and 9(e). The diversity between the codewords leads
to differentiation and discrimination between features in the
coding layer. We found the codewords learned from SIFT
extracted from the Caltech-101, Caltech-256 and 15-Scenes
datasets to be visually similar. This leads to the potential
that the shallow dictionaries learned are generic enough to
be transferred between datasets (Section V-C).
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Fig. 9. (a) Visualization of visual dictionary learned from SIFT descriptors
by a shallow architecture. The codewords are observed to encode a variety of
image structure, such as (b) smooth gradients, (c) lines and edges, (d) textured
gratings or (e) other complex features, such as corners, bends and center-
surround features. Hypothetical pixel intensities leading to strong responses
for the codewords are shown below each set of codeword examples.
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Fig. 10. Results on 15-Scenes with unsupervised RBM learning jointly
regularized with sparsity and selectivity. Performance degrades as the coding
gets too sparse or too distributed.

2) Effects of Sparse and Selective Regularization: The
average selectivity of a population of codewords is equivalent
to the sparsity of the population averaged across examples. We
analyze a metric relative to the size of the visual dictionary.
In Fig. 10, we observe the effects of varying levels of induced
selectivity and sparsity on image categorization with 15-
Scenes dataset using the shallow unsupervised architecture
trained on macro features. The performance suffers on both
ends of the spectrum when the representation is too sparse
and selective, or too distributed and broady tuned.

We note the importance of the joint sparse and selective
regularization. The results on the Caltech-101 dataset (15
training examples), using a shallow distributed RBM (51.7%)
and RBMs regularized with sparse long-tailed distributions
(45.5%) and selective long-tailed distributions (36.8%), were
significantly lower compared to the jointy sparse and selective
RBM (66.8%). Another way to analyze the effects of sparsity
and selectivity is to perform image categorization with varying
levels of induced sparsity and selectivity (Fig. 11). The image
categorization results peak when there is a suitably balanced



200

10",
Sparsm’

Fig. 11. Relative contributions of sparsity and selectivity on categorization
results on Caltech-101 (15 training examples) using a shallow architecture.

amount of sparsity and selectivity induced. This highlights the
need for a jointly sparse and selective regularizer. In general,
categorization results tend to peak with y set in the range of
0.02 to 0.1 across the datasets.

3) Impact of Supervised Fine-Tuning: As observed in
Table II, supervised fine-tuning improves the classification
accuracy, slightly in the shallow model and more significantly
in deep architectures. It is obvious that the gains due to
supervision are statistically significant for the deep architec-
ture, however its benefits on the shallow architecture remains
uncertain. An analysis of individual experimental trials with 30
training examples on Caltech-101 (Fig. 12) reveals that results
of every trial is improved through fine-tuning. The average
improvement per trial for the shallow and deep architectures
are 0.9 £ 0.6% and 6.8 + 0.6% respectively. Statistically, the
gain is always positive for both architectures, but supervision
is especially important to empower deep visual dictionaries.

VI. CONCLUSIONS

In this paper, we presented a deep hierarchical architecture
to encode SIFT descriptors in the BoW framework. The prob-
lem was approached in two main directions: 1) unsupervised
learning of RBM modules regularized to be jointly sparse and
selective, and 2) stacking these building blocks while capturing
spatial correlations. These RBMs were later fine-tuned using
top-down supervision — an empirically important step for
deep architectures. The result is a four-layer BoW architecture
consisting of an input layer of SIFT features, an output layer
of category labels and two intermediate layers of spatially
aggregating and supervised fine-tuned representations. This
design achieved competitive results among the feature-coding
family of methods, on both the Caltech-101 and 15-Scenes
image categorization datasets.

The integration of deep learning and the BoW model, being
in its inceptive phase, is open to many propositions of future
studies. For our part, we hope to bridge the gap for optimizing
local representations using global image labels. We are also
currently studying techniques to better integrate bottom-up
with top-down signals for computer vision problems.
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Fig. 12. Results for 10 trials on Caltech-101 (30 examples) for the (a) shallow
and (b) deep architectures using macro features. When supervised fine-tuning
improves the results for every trial. The performance boost is substantial for
the deep model.

APPENDIX
DERIVATION OF REGULARIZED UPDATE RULES

This appendix details the steps to derive the RBM update
rules for the unsupervised phase consisting of the combi-
nation of maximum likelihood approximation and precise
regularization. We begin with Eq. 9 and 10, where following
optimization problem was posed:

J K
argmm ZlogZP X, Zk; +)\ZZ£ Zjk, Pik)s

j=1k=1
a7)
where X is a regularization constant and £(z;, p;x) is simply
the cross-entropy loss between the data-sampled activation z;,
and the target activation pjy:

L(zjk, pjr) = —pjr log zjr, — (1 — pjx) log(1 — zj1).  (18)

Let the total input for z; be w;, = Zf:o w;jTik. We take
the partial derivative of £(z;,pjr) with respect to w;; and
apply a negative constant —7 o< A to reverse the error of zjy:

oL oL 0z; ik Oou; ik
A Iy k _ = J J
v J( ) nawij (’9z]k au]k 5‘w”
1—pjx  Djk
— — v Br . 1— 2; .
n<1 = Zik ij) (ij> ( Z'jk) o
= —nzi(2jk — Pjk) (19)

Together with the contrastive divergence gradient, the batch-
wise parameter update is:

Aw;; = e((ziz;)

=y {(w;

pi))
(20)

data <xizj>recon) -n <xi,data(zj,data_

Zj>data + n <xizj>target —€ <:Cizj>recon
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where v =

e —n is the new learning rate for the data

distribution as modified by the target distribution and ()
denotes the an averaging over the K training samples in
each batch and x;;, and z;;, are sampled from the distribution
denoted by the subscript. Here, sampling from the target input
distribution is equivalent to the data-sampled input themselves

(i.e.

Tj target ‘= Ti data), While sampling from the latent target

distribution z; ;4,-ge¢ directly yields p;.

[1]
[2]
[3]
[4]

[5]
[6]
[7]

[8]

[9]

(10]
(11]
[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

J. Sivic and A. Zisserman, “Video Google: A text retrieval approach to
object matching in videos,” in ICCV, 2003.

D. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vision, vol. 60, pp. 91-110, 2004.

N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in CVPR, 2005.

S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories,” in CVPR,
2006.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in CVPR, 2009.

H. Goh, N. Thome, M. Cord, and J.-H. Lim, “Unsupervised and
supervised visual codes with restricted boltzmann machines,” in ECCV,
2012.

K. Sohn, D. Y. Jung, H. Lee, and A. Hero III, “Efficient learning
of sparse, distributed, convolutional feature representations for object
recognition,” in /CCV, 2011.

H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional
deep belief networks for scalable unsupervised learning of hierarchical
representations,” in /CML, 2009.

J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid
matching using sparse coding for image classification,” in CVPR, 2009.
Y. Bengio, “Learning deep architectures for AL’ Foundations and Trends
in Machine Learning, vol. 2, no. 1, pp. 1-127, 2009.

G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief networks,” Neural Comput., vol. 18, no. 7, pp. 1527-1554,
2006.

Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks,” in NIPS, 2006.

K. Hornik, “Approximation capabilities of multilayer feedforward net-
works,” Neural Networks, vol. 4, no. 2, pp. 251-257, 1991.

Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hub-
bard, and L. Jackel, “Backpropagation applied to handwritten zip code
recognition,” Neural Comput., vol. 1, no. 4, pp. 541 — 551, 1989.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” P. IEEE, vol. 86, no. 11, pp. 2278-
2324, November 1998.

M. Ranzato, F. Huang, Y. Boureau, and Y. LeCun, “Unsupervised
learning of invariant feature hierarchies with applications to object
recognition,” in CVPR, 2007.

G. E. Hinton, “To recognize shapes, first learn to generate images,” in
Computational Neuroscience: Theoretical Insights into Brain Function,
P. Cisek, T. Drew, and J. Kalaska, Eds. Elsevier, 2007.

P. Smolensky, “Information processing in dynamical systems: Founda-
tions of harmony theory,” in Parallel Distributed Processing: Vol. 1:
Foundations, D. E. Rumelhart, J. L. McClelland, and the PDP Research
Group, Eds. Cambridge: MIT Press, 1986, pp. 194-281.

Y. LeCun, “Une procédure d’apprentissage pour réseau a seuil asym-
metrique (a learning scheme for asymmetric threshold networks),” in
Cognitiva 85, Paris, France, 1985, pp. 599-604.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, pp. 533 — 536,
October 1986.

G. E. Hinton and R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, pp. 504-507, 2006.

P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in /ICML,
2008.

B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive
field properties by learning a sparse code for natural images,” Nature,
vol. 381, no. 6583, p. 607, 609 1996.

[25]

[26]
[27]
[28]
[29]
(30]
[31]

[32]

[33]
(34]
[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]

[50]

[51]

[52]
[53]

[54]

[55]

[56]

(571

K. Kavukcuoglu, P. Sermanet, Y. Boureau, K. Gregor, M. Mathieu,
and Y. LeCun, “Learning convolutional feature hierachies for visual
recognition,” in NIPS, 2010.

L. Bo and X. R. D. Fox, “Multipath sparse coding using hierarchical
matching pursuit,” in CVPR, 2013.

J. van Gemert, C. Veenman, A. Smeulders, and J.-M. Geusebroek,
“Visual word ambiguity,” IEEE Trans. Pattern Anal. Mach. Intell., 2010.
Y. Boureau, N. Le Roux, F. Bach, J. Ponce, and Y. LeCun, “Ask the
locals: Multi-way local pooling for image recognition,” in ICCV, 2011.
H. Lee, C. Ekanadham, and A. Ng, “Sparse deep belief net model for
visual area V2,” in NIPS, 2008.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Supervised
dictionary learning,” in NIPS, 2008.

Z. Jiang, Z. Lin, and L. S. Davis, “Learning a discriminative dictionary
for sparse coding via label consistent K-SVD,” in CVPR, 2011.

L. Yang, R. Jin, R. Sukthankar, and F. Jurie, “Unifying discriminative
visual codebook generation with classifier training for object category
recognition,” in CVPR, 2008.

J. Yang, K. Yu, and T. Huang, “Supervised translation-invariant sparse
coding,” in CVPR, 2010.

Y. Boureau, F. Bach, Y. LeCun, and J. Ponce, “Learning mid-level
features for recognition,” in CVPR, 2010.

J. Yang, K. Yu, and T. Huang, “Efficient highly over-complete sparse
coding using a mixture model,” in ECCV, 2010.

J. Wang, J. Yang, K. Yu, E Lv, T. Huang, and Y. Gong, “Locality-
constrained linear coding for image classification,” in CVPR, 2010.

H. Goh, N. Thome, and M. Cord, “Biasing restricted Boltzmann ma-
chines to manipulate latent selectivity and sparsity,” in NIPS Workshop,
2010.

H. Goh, L. Kusmierz, J.-H. Lim, N. Thome, and M. Cord, “Learning
invariant color features with sparse topographic restricted Boltzmann
machines,” in ICIP, 2011.

S. Lazebnik and M. Raginsky, “Supervised learning of quantizer code-
books by information loss minimization,” IEEE Trans. Pattern Anal.
Mach. Intell., pp. 1294-1309, 20009.

Y. Boureau, J. Ponce, and Y. LeCun, “A theoretical analysis of feature
pooling in vision algorithms,” in /CML, 2010.

S. Avila, N. Thome, M. Cord, E. Valle, and A. Araujo, “Pooling in
image representation: the visual codeword point of view,” Comput. Vis.
Image. Und., 2012.

F. Perronnin and C. Dance, “Fisher kernels on visual vocabularies for
image categorization,” in CVPR, 2007.

H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local
descriptors into a compact image representation,” in CVPR, 2010.

X. Zhou, K. Yu, T. Zhang, and T. Huang, “Image classification using
super-vector coding of local image descriptors,” in ECCV, 2010.

S. McCann and D. G. Lowe, “Spatially local coding for object recog-
nition,” in ACCV, 2012.

V. N. Vapnik, The nature of statistical learning theory. New York, NY,
USA: Springer-Verlag New York, Inc., 1995.

K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. LeCun, “Learning
invariant features through topographic filter maps,” in CVPR, 2009.

K. Yu, Y. Lin, and J. D. Lafferty, “Learning image representations from
the pixel level via hierarchical sparse coding,” in CVPR, 2011.

M. Riesenhuber and T. Poggio, “Hierarchical models of object recogni-
tion in cortex,” Nat. Neurosci., vol. 2, pp. 1019-1025, 1999.

S. Bileschi, M. Riesenhuber, T. Poggio, T. Serre, and L. Wolf, “Robust
object recognition with cortex-like mechanisms,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 29, pp. 411-426, 2007.

J. Mutch and D. Lowe, “Object class recognition and localization using
sparse features with limited receptive fields,” Int. J. Comput. Vision,
vol. 80, pp. 4547, 2008.

C. Theriault, N. Thome, and M. Cord, “Extended coding and pooling
in the hmax model,” IEEE Trans. Image Process., 2012.

G. E. Hinton, “Training products of experts by minimizing contrastive
divergence,” Neural Comput., vol. 14, no. 8, p. 1771-1800, 2002.

G. Hinton, “A practical guide to training restricted Boltzmann ma-
chines,” Dept. of Comp. Sci., University of Toronto, Tech. Rep. UTML
TR 2010-003, 2010.

K. Swersky, B. Chen, B. Marlin, and N. de Freitas, “A tutorial on
stochastic approximation algorithms for training restricted boltzmann
machines and deep belief nets,” in ITA Workshop, 2010.

D. Blackwell, “Conditional expectation and unbiased sequential estima-
tion,” Ann. Stat., vol. 18, pp. 105-110, 1947.

T. M. Mitchell, “The need for biases in learning generalizations,”
Departament of Computer Science, Rutgers University, Technical Report
CBM-TR-117, 1980.



(58]
[59]

[60]

[61]
[62]
[63]

[64]

[65]
[66]

[67]

[68]

[69]

[70]

[71]

[72]
[73]
[74]
[75]
[76]

[77]

B. Willmore and D. J. Tolhurst, “Characterizing the sparseness of neural
codes,” Network: Comp. Neural, vol. 12, no. 3, p. 255-270, 2001.

H. B. Barlow, “Unsupervised learning,” Neural Comput., vol. 1, no. 3,
pp. 295-311, 1989.

E. T. Rolls and A. Treves, “The relative advantage of sparse versus
distributed encoding for associative neuronal networks in the brain,”
Network: Comp. Neural, vol. 1, no. 4, pp. 407-421, 1990.

P. Foldidk, “Neural coding: non-local but explicit and conceptual,” Curr.
Biol., vol. 19, no. 19, 2009.

V. Nair and G. Hinton, “3D object recognition with deep belief nets,”
in NIPS, 2009.

M. Welling, G. E. Hinton, and S. Osindero, “Learning sparse topographic
representations with products of student-t distributions,” in NIPS, 2003.
A. Hyvirinen and P. O. Hoyer, “A two-layer sparse coding model learns
simple and complex cell receptive fields and topography from natural
images,” Vision Res., vol. 41, no. 18, pp. 2413-2423, 2001.

J. Ngiam, P. W. Koh, Z. Chen, S. Bhaskar, and A. Ng, “Sparse filtering,”
in NIPS, 2011.

H. Larochelle and Y. Bengio, “Classification using discriminative re-
stricted Boltzmann machines,” in ICML, 2008.

H. Goh, N. Thome, M. Cord, and J.-H. Lim, “Top-down regularization
of deep belief networks,” in Advances in Neural Information Processing
Systems (NIPS), 2013.

L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models
from few training examples: An incremental bayesian approach tested
on 101 object categories,” in CVPR Workshop, 2004.

G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category
dataset,” California Institute of Technology, Tech. Rep. 7694, 2007.
[Online]. Available: http://authors.library.caltech.edu/7694

L. Liu, L. Wang, and X. Liu, “In defense of soft-assignment coding,”
in ICCV, 2011.

G. L. Oliveira, E. R. Nascimento, A. W. Vieira, and M. F. M. Campos,
“Sparse spatial coding: A novel approach for efficient and accurate
object recognition,” in ICRA, 2012.

M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, “Deconvolu-
tional networks,” in CVPR, 2010.

O. Duchenne, A. Joulin, and J. Ponce, “A graph-matching kernel for
object categorization,” in /ICCV, 2011.

J. Feng, B. Ni, Q. Tian, and S. Yan, “Geometric £,-norm feature pooling
for image classification,” in CVPR, 2011.

O. Boiman, E. Shechtman, and M. Irani, “In defense of nearest-neighbor
based image classification,” in CVPR, 2008.

T. Tuytelaars, M. Fritz, K. Saenko, and T. Darrell, “The NBNN kernel,”
in ICCV, 2011.

R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, “Self-taught
learning: Transfer learning from unlabeled data,” in /CML, 2007.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Hanlin Goh received the B.Eng. degree in computer
engineering and the M.Sc. degree in bioinformatics
from the Nanyang Technological University, Singa-
pore, in 2007 and 2009 respectively, and a Ph.D.
degree (with highest honors) in computer science
from the Université Pierre et Marie Curie — Sorbonne
Universités, Paris, France, in 2013.
He is currently a Research Scientist with the
) Visual Computing Department at the Institute for
Infocomm Research, A*STAR, Singapore, and a
member of the Image and Pervasive Access Labora-
tory, CNRS UMI 2955, a French-Singaporean joint laboratory. His research
motivation is to design machine learning algorithms that lead to scalable
solutions for broad competence computer vision.

Nicolas Thome (M’10) received the diplome
d’Ingénieur from the Ecole Nationale Supérieure de
Physique de Strasbourg, France, the DEA (MSc)
degree from the University of Grenoble, France, in
2004 and, in 2007, the PhD degree in computer
science from the University of Lyon, France. In
2008, he was a postdoctoral associate at INRETS
in Villeneuve d’Ascq, France. Since 2008 is an
assistant professor at Université Pierre et Marie
Curie (UPMC) and Laboratoire d’Informatique de
Paris 6 (LIP6). His research interests are in the area
of Computer Vision and Machine Learning, particularly in the design and
learning of complex image representations and similarities, with applications
to image and video understanding.

bl

Matthieu Cord (M’09) received the Ph.D. degree
in computer science from the UCP, France, before
working in the ESAT lab at KUL University, Bel-
gium, and in the ETIS lab, France as Assistant
Professor. He joined the Computer Science depart-
ment LIP6, at UPMC Sorbonne Universitiés, Paris,
in 2006 as full Professor. In 2009, he was nominated
at the IUF (French Research Institute) for a 5 years
delegation position.

His research interests include Computer Vision,
Image Processing, and Pattern Recognition. He de-
veloped several systems for content-based image and video retrieval, focusing
on interactive learning-based approaches. He is also interested in Machine
Learning for Multimedia processing, Digital preservation, and Web archiving.

Prof. Cord has published a hundred scientific publications and participated
in several international projects (European FP6 and FP7, Singapore, Brazil)
on these topics. He is a member of the IEEE.

Joo-Hwee Lim (M’07) received his B.Sc. (First
Class Honours) and M.Sc. (by research) degrees in
Computer Science from the National University of
Singapore and his Ph.D. degree in Computer Science
& Engineering from the University of New South
Wales.

He is currently the Head of the Visual Computing
Department at the Institute for Infocomm Research
(I2R), A*STAR, Singapore, and an Adjunct Asso-
\ ciate Professor at the School of Computer Engineer-

ing, Nanyang Technological University, Singapore.
He is the co-Director of IPAL (Image & Pervasive Access Laboratory), a
French-Singapore Joint Lab (CNRS UMI 2955, Jan 2007 to Jan 2015). He
is bestowed the title of ‘Chevalier dans lordre des Palmes Academiques’
by the French Government in 2008 and the National Day Commendation
Medal by the Singapore Government in 2010. He has published more than
190 international refereed journal and conference papers and co-authored
18 patents (awarded and pending) in his research areas of computer vision,
cognitive vision, pattern recognition, and medical image analysis.

d


http://authors.library.caltech.edu/7694

	Introduction
	Related Work
	Learning Deep Architectures for Vision
	Bag of Words Framework for Image Categorization

	Constructing Hierarchical Visual Architectures
	Single-Layer Visual Architecture
	Constructing a deep feature coding architecture

	Learning Visual Representations
	Precise RBM Regularization
	Sparse and Selective Regularization
	Supervised Fine-Tuning

	Experiment Results and Discussion
	Experimental Setup
	Image Datasets
	Local Feature Extraction
	Dictionary Learning and Evaluation Setup
	Spatial Pyramids and SVM Classification

	Image Categorization Performance
	Comparison with Other Methods
	Discussion on Depth and Supervision
	Computational Resources

	Shallow and Deep Transfer Learning
	Between Caltech-101 and Caltech-256
	Between Caltech-101 and 15-Scenes

	Analysis of Visual Dictionary Learning
	Codeword Visualization
	Effects of Sparse and Selective Regularization
	Impact of Supervised Fine-Tuning


	Conclusions
	Appendix: Derivation of Regularized Update Rules
	References
	Biographies
	Hanlin Goh
	Nicolas Thome
	Matthieu Cord
	Joo-Hwee Lim


