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Abstract: Purpose Automatic registration between abdominal ultrasound (US) and computed
tomography (CT) images is needed to enhance interventional guidance of renal
procedures, but it remains an open research challenge. We propose a novel method
that doesn't require an initial registration estimate (a global method) and also handles
registration ambiguity caused by the organ's natural symmetry. Combined with a
registration refinement algorithm, this method achieves robust and accurate kidney
registration while avoiding manual initialization.
Methods The global registration method has 3 main steps: 1) Automatic anatomical
landmark localization, where two deep neural networks (DNNs) are trained to localize a
set of renal landmarks in both modalities. 2) Registration hypothesis generation, where
all geometrically compatible registration solutions are computed using a novel
algorithm (LESAC), designed to handle label constraints and ambiguous landmarks
due to image self-similarity. 3) Hypothesis selection, where the best solution is selected
using landmark registration error and physical constraints to break registration
symmetries. The selected hypothesis can be used to initialize any suitable registration
refinement method. Results are presented with state-of-the-art surface-based matching
(BCPD and ICP) and automatic kidney segmentation.  
Results This automatic approach for registration initialization using direct voxel
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information gives better results than several state-of-the-art methods using organ
surface information. The results obtained on 59 pairs of 3D US/CT kidney images show
that the average error on a registration target (Target Registration Error: TRE) is 5.45
mm with ICP refinement and 5.52 mm with BCPD refinement, and the average Dice
score is 80.7\% with ICP refinement, 83.3\% with BCPD refinement.
Conclusion This work presents the first approach for automatic kidney registration in
US and CT images, which doesn't require an initial manual registration estimate to be
known a priori. The results show a fully automatic registration approach with
performances comparable to manual methods is feasible.
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Abstract

Purpose Automatic registration between abdominal ultrasound (US) and com-
puted tomography (CT) images is needed to enhance interventional guidance of
renal procedures, but it remains an open research challenge. We propose a novel
method that doesn’t require an initial registration estimate (a global method)
and also handles registration ambiguity caused by the organ’s natural symmetry.
Combined with a registration refinement algorithm, this method achieves robust
and accurate kidney registration while avoiding manual initialization.
Methods The global registration method has 3 main steps: 1) Automatic
anatomical landmark localization, where two deep neural networks (DNNs) are
trained to localize a set of renal landmarks in both modalities. 2) Registration
hypothesis generation, where all geometrically compatible registration solutions
are computed using a novel algorithm (LESAC), designed to handle label con-
straints and ambiguous landmarks due to image self-similarity. 3) Hypothesis
selection, where the best solution is selected using landmark registration error
and physical constraints to break registration symmetries. The selected hypothe-
sis can be used to initialize any suitable registration refinement method. Results
are presented with state-of-the-art surface-based matching (BCPD and ICP) and
automatic kidney segmentation.
Results The results obtained on 59 pairs of 3D US/CT kidney images show
that the average error on a registration target (Target Registration Error: TRE)
is 5.45 mm with ICP refinement and 5.52 mm with BCPD refinement, and the
average Dice score is 80.7% with ICP refinement, 83.3% with BCPD refinement.
This global registration method gives better results than several state-of-the-art
global methods.
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Conclusion This work presents the first approach for automatic kidney registra-
tion in US and CT images, which doesn’t require an initial manual registration
estimate to be known a priori. The results show a fully automatic registration
approach with performances comparable to manual methods is feasible.

Keywords: Ultrasound, registration, landmark localization, fusion imaging,
interventional guidance

1 Introduction

Abdominal US is a cost-effective, real-time imaging modality for various proce-
dures. However, it has limitations like poor contrast, acoustic shadows, artifacts, and
operator dependence. Image fusion, combining pre-operative CT and intra-operative
US, addresses these limitations by spatially aligning (registering) these modalities.
Despite decades of research, US inter-modal registration remains challenging. Cur-
rently, certified devices, like Siemens Acuson S3000, rely on a manual alignment
process, posing issues of operator dependence and time consumption. The need for
an accurate and automatic registration algorithm is crucial for reducing time, reduc-
ing, operator-dependence, and advancing fusion imaging availability for standard and
robotic-assisted percutaneous procedures.

Inter-modal 3D medical image registration is a major and active research topic,
where methods can be characterized as either a global or refinement approaches. Global
methods don’t require an initial registration estimate to be known a priori, and there
are two main approaches: feature-based and shape-based. Feature-based methods use
distinct 3D points with discriminative structural information, which can be detected
in the source and target images. They are then matched using a descriptor vector
that characterizes the keypoint’s local structure. A matching step is then followed
using descriptor similarity and a geometric alignment algorithm such as RANSAC or
TEASER++ [1]. Various methods exist to extract features from 3D surfaces or point
clouds, such as FPFH [2] (hand-crafted) and DIP [3] (learning-based). Their main
advantage is to reduce the domain gap between modalities using surfaces as a domain
bridge. Other methods aim to extract features and descriptors directly from 2D [4] or
3D images [5]. However, due to strong domain differences, they have limited success
in inter-modal registration with US/CT (or MR) images. In contrast to feature-based
methods, shape-based methods aim to register segmented 3D surfaces. Various meth-
ods have been proposed, including spectral graph matching [6], Principal Component
Analysis (PCA) [7], and Deep Learning [8]. However, they are limited by the need for
accurate segmentation as a pre-processing step. all use

Several global registration methods have been presented specifically to register
CT (or MR) and US abdominal organs [5, 9–13]. For example, in [9], a Controlled
Random Search (CRS) algorithm is applied in the diaphragm’s segmented region for
global liver registration in 3D US/MR images. In [5], the authors use two CNNs to
extract features in 2D US/MR images of the liver to learn “correspondent keypoints”,
which in turn are used to estimate a rigid transformation. An approach based on par-
ticle filtering was proposed to register the prostate in 3D US/MR images globally
[10]. However, there have been few attempts to solve global kidney registration, which
is challenging due to the domain difference, US artifacts such as acoustic shadows
from ribs and intestinal gas, and low contrast between the kidney and surrounding
structures. Another important challenge is that the kidney has strong bilateral sym-
metry, which can cause existing global methods to fail to find the correct solution.
Previously published works don’t solve global kidney registration [11–13]. Instead,
they solve registration refinement, where an initial registration is provided a priori,
which is improved typically with an iterative process. Various refinement methods have
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been proposed, including intensity-based (ImFusion Suite - ImFusion GmbH, Munich,
Germany), and VoxelMorph), and surface-based [13, 13–16] methods. However, they
require a good initial registration estimate for initialization i.e. a global registration
method. Consequently, new contributions for robust, automatic global registration are
important.

Contributions statements.
This work presents a novel feature-based method for the automatic global

registration of 3D ultrasound and CT kidney images. Key contributions include:

1. Achieving automatic spatial localization of registration landmarks using two inde-
pendent landmark localization DNNs, one for each modality. This eliminates the
need for paired training data and avoids using an intermediate representation, such
as segmented surfaces, to bridge the domain gap.

2. Introducing a landmark matching approach using a small number of semantic labels
(default of 4). This not only eliminates the need for feature descriptors but also
enables global robust alignment through an exhaustive search method. We propose
the LESAC method, a variant of RANSAC without randomization, offering deter-
minism, guaranteed global optimality (important for algorithm documentation and
clinical translation), and the ability to find multiple registration solutions due to
quasi-symmetry, plus the removal of a key RANSAC parameter (number of search
iterations).

3. The presented global registration method may be combined with any regis-
tration refinement method. We demonstrate it with Bayesian Coherent Point
Drift (BCPD) refinement, known for strong performance in inter-modal and
surface-based registration tasks [14–16], and ICP.

4. To the best of our knowledge, this work is the first method for US/CT global
registration of the kidney, facilitating fusion imaging for renal procedures with-
out manual registration. Comparative evaluations against various baseline methods
from related registration tasks highlight superior performance in accuracy, speed,
and handling kidney symmetry.

2 Method

2.1 Dataset

The global registration method here relies on a training dataset of 3D US and CT
images of human kidneys, requiring several anatomical landmark annotations. The
images don’t need to be paired, and organ segmentation isn’t necessary. A newly
created dataset [14] (under peer-review) includes 3D US and CT images from 48
human patients. We used the image, kidney segmentation, and anatomical landmark
annotations of 5 landmarks (Figure 1) for all kidneys that were annotated in both
modalities (59 kidneys). While [14] benchmarks several existing registration refinement
methods, this work uses the dataset for a new global registration methodology. Please
refer to [14] for specific dataset details.
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Fig. 1 Dataset used to train and test the proposed method [14]. 2D CT (two left) and 2D US (two
right) slices of the left and right kidney in the canonical sagittal plane with 5 anatomical landmarks
overlaid.

2.2 Global registration methodology

2.2.1 Step 1: Symmetry-invariant anatomical landmark localization

The DNNs were trained to segment local regions surrounding each landmark, simi-
larly to heat-maps [17, 18], where one binary region (mask) was inferred per landmark.
Mask values of non-zero or zero represented voxels within or outside the landmark’s
local vicinity using a spherical radius in voxels (we use a default radius correspond-
ing to approximately 10 mm). A significant challenge, especially for localizing US
landmarks, was due to the limited imaging window associated with 3D US data (the
images had sizes of approximately 228×162×222 mm3), and the kidney strong 2-fold
(bilateral) symmetry in the transversal plane (Figure 1). Consequently, differentiating
rotationally-symmetric landmarks (4 and 5) is highly challenging for state-of-the-art
DNNs using only image data. We solved this using label fusion, where landmarks 4
and 5 were merged as one label (’kidney-pole’). Consequently, the DNN’s task was to
detect the poles but not differentiate between the superior and anterior poles. This
differentiation was performed in the downstream registration task, using additional
geometric information (Section 2.2.3).

Any state-of-the-art DNN may be used to segment landmarks. We present results
using nnU-Net [19], based on its strong general performance for medical image seg-
mentation. The DNNs were trained with supervised learning, using the ”3d fullres”
self-configuration and standard parameters. The complete training configuration is
provided in the supplementary material. After inference, landmark positions are esti-
mated using region centroids from a connected component analysis. We denote as P
and Q the set of all detected landmarks in US (moving) and CT (fixed) 3D image coor-
dinates, respectively. They have associated integer labels denoted by L(p ∈ P) ∈ Z
and L(q ∈ Q) ∈ Z. In practice, a label may have zero, one, or more points in P or Q.
In the US, for example, a landmark may not be detected due to an acoustic shadow.
DNN errors may also cause spurious landmarks. Consequently, estimating the spatial
transform from detected landmarks isn’t trivial. In the following step, a simple, fast,
and deterministic algorithm is used to establish an optimal registration that handles
these challenges.

2.2.2 Step 2: Exhaustive registration hypothesis generation

A set of registration hypotheses are generated from P,Q, and L, by adapting RANSAC
in two aspects: firstly, to ensure point matches are made only between points with the
same labels, secondly, by generating registration hypotheses from all possible mini-
mal sets of M point matches. This not only removes the randomization component
and associated hyper-parameters of RANSAC, but also enables multiple registra-
tion hypotheses to be found due to organ symmetry (which generates symmetries in
the point sets). We refer to this as robust registration hypothesis generation using
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Labeled Exhaustive Sampling and Consensus (LESAC), with pseudo-code provided in
Algorithm 1.

Similar to RANSAC, a spatial transform function that trades off registration accu-
racy with complexity must be chosen. Our objective is to have an approximate global
registration that can be refined by a registration refinement algorithm such as BCPD.
We present results with a similarity transform, requiring a minimum of M = 3. Note
that the approach generalizes to other transforms.

Data: The moving and fixed point sets, P and Q, with associated integer
labels L(p ∈ P) ∈ Z and L(q ∈ Q) ∈ Z

Result: The set of registration hypotheses, H, with their associated numbers
of inlier matches I and root mean squared errors (RMSEs) E

H ← ∅, I ← ∅, E ← ∅;

forall p1, . . . ,pM , q1, . . . ,qM such that L(p1) = L(q1), . . . , L(pM ) = L(qM )
do

Compute best-fitting transform H aligning (p1, . . . ,pM ) to (q1, . . . ,qM )
s← 0 ; // Number of inlier matches associated to H

forall p ∈ P do
p′ ← H(p);
S ← ∅ ; // Set of inlier matches

Q′ = {q ∈ Q | L(q) = L(p)};
q = argminqi∈Q′ ∥qi − p′∥ ; // nearest neighbour match

if ∥q− p′∥ < τ then
S ← S ∪ {(p,q)} ; // add match to inlier set

s← s+ 1
end

end
if s ≥M then

Compute best-fitting transform H′ with corresponding RMSE e, using
all inlier matches S;
H ← H∪ {H′};
I ← S ∪ {s};
E ← E ∪ {e};

end

end

return H,S, E ;

Algorithm 1: LESAC: Registration hypothesis generation using Labeled Exhaus-
tive Sampling and Consensus

2.2.3 Step 3: Registration hypothesis selection

Having run Algorithm 1, the best registration hypotheses are extracted using the
following sequential (greedy) selection. First the hypothesis Hi∗ ∈ H with highest
score si∗ = maxs∈I is selected. In the case of ties, the associated RMSE scores in E are
used to tie-break. Then, all transforms in H that are geometrically similar to Hi∗ are
eliminated, generating a residual hypothesis set H′ ⊂ H. Similarity was assessed by
measuring if the rotational difference in degrees (using Rodrigues’ formula) exceeded a
threshold (we used as default 30 degrees). Having formed H′, the next best hypothesis
in H′ is selected, and the greedy selection process continues until either no more
hypotheses can be selected or a maximum number maxH of hypotheses have been
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selected. For the kidney, knowing that it normally has strong bilateral symmetry, we
imposed the early stopping criteria of maxH = 2 in our experiments.

2.3 Initialization hypothesis selection

A process is then required to eliminate the incorrect registration hypothesis from Step
3. Additional geometric information about the patient’s posture may be exploited to
achieve this goal. There are several possible approaches depending on the hardware
setup. For example, consider situations when the 3D US data is acquired using a
tracked 2D probe, with an EM sensor (a common scenario in image fusion applications
and devices, such as the Acuson S3000). In this situation, the patient’s head-feet
3D direction (in US image coordinates) can be approximated by moving the tracked
probe from the patient’s head to the feet. Combined with the fact that CT images are
normally acquired in the supine position (head-feet direction along the positive z-axis),
there is enough geometric information to eliminate the incorrect hypothesis (that flips
the kidney poles wrongly). While this needs further investigation, the dataset lacks
tracking information. Consequently, to assess registration accuracy in the subsequent
section, we eliminated the least compatible hypothesis with respect to the ground-truth
landmark annotations (the compatibility function is provided in the supplementary
material).

3 Experimental Validation

This section describes the experimental validation we conducted using the dataset of
[14]. 5-fold cross-validation (CV) was applied using the same splits for all methods.
For baseline methods with free hyper-parameters (FPFH and DIP - notably feature
scale), the hyper-parameters were optimized on each CV training fold, and then frozen
before evaluating performance on the test fold. All DNNs were trained on each CV
training fold and tested without optimization on the test fold.

3.1 Baselines and method configurations

Baselines

The method was compared against a range of competitive global registration baselines.
For a fair comparison, all baselines were configured to use similarity spatial trans-
forms, which were then refined using the same registration refinement methods. For
all methods using feature detection and matching on 3D surfaces (FPFH [2] and DIP
[3]), the kidney surfaces were computed automatically in CT and US images using
trained nnU-Net models, as described [14].

The global registration baselines were:

• (FPFH,RANSAC). This used surface feature matching with state-of-the-art
hand-crafted features (FPFH). RANSAC was used to perform robust feature
matching and transform estimation.

• (DIP,RANSAC). This used surface feature matching with state-of-the-art deeply-
learned features (DIP), combined with RANSAC.

• (FPFH,TEASER). This used FPFH features combined with TEASER++ [1] to
perform robust feature matching and transform estimation.

• (DIP,TEASER). This used DIP features combined with TEASER++
• PCA. This used surface segmentation and PCA-based pose estimation, which were
implemented as follows. Firstly, PCA aligned the two principal axes of the US and
CT surfaces. This alignment had four solutions, from which two solutions with
the lowest surface-to-surface error were outputted. Similarly to our method, the
solution used for evaluation was the one with the highest ground-truth landmark
compatibility.
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• Manual. This uses manual initialization, using the similarity transform computed
from ground-truth landmarks. This was included to assess the performance gap
between automatic and manual initialization.

In our proposed approach, there were instances where fewer than 3 landmark
matches were found from the landmark localization DNNs. This mainly happened
when the US image quality was especially low and where registration may not
ultimately be achievable with sufficient reliability for clinical application. To fairly
compare the proposed method on all cases in the evaluation, we used a fall-back vali-
dation method - which enables all methods to be compared using all cases, even if some
methods do not return solutions in all cases. We used PCA as the fall-back method,
whose solution was reverted to any case with fewer than 3 matching landmarks. There
were 6 such cases (10.1%).

The efficacy of the above baselines and our method was assessed in the context
of the intended use i.e. as an automatic initialization method that may be used by
a registration refinement method that requires an initial registration estimate. Two
competitive registration refinement methods were considered in this work:

• ICP. Iterative Closest Point, configured with an affine spatial transform. This has
been used in many medical image registration tasks and requires segmented surfaces.
We used the same surfaces to compute FPFH and DIP features from nnU-Net.

• BCPD. Bayesian Coherent Point Drift [20], a recent extension of Coherent Point
Drift, which is popular for registering surfaces and point clouds extracted from
medical images, e.g. [21].

3.2 Experimental results

3.3 Method configurations and performance metrics

We compared our method in two configurations. The first, denoted as Proposed-4L,
was the same as described in Section 3.4. As an ablation study, a second configuration
(denoted as Proposed-5L) was used to demonstrate the limitations if we ignore
organ symmetry in the algorithm design. To this end, Proposed-5L differed from
Proposed-4L in two aspects: First, label fusion wasn’t applied to the kidney pole
training labels. Therefore, the trained landmark localization DNNs in Proposed-
5L differentiated superior versus inferior poles. Secondly, the maximum number of
outputted solutions maxH was set to 1.

3.4 Registration refinement methods and performance metrics

In this study, we applied all global registration methods as registration initializers for
two surface-based refinement methods: Bayesian Coherent Point Drift [15, 20]- con-
sidered state-of-the-art, as well as ICP (implemented in Open3D). nnU-Net was used
to automatically segment the kidney surfaces in US and CT modalities, as described
in [14]. Performance was measured with three metrics:

• Target Registration Error (TRE). We used the ground-truth (GT) position of
the central landmark (’renal pelvis’) as a registration target, from which TRE was
assessed. Note that we didn’t provide the ground-truth location of this target to
any method. We chose not to use other landmarks as registration targets due to the
relatively high uncertainty associated with their ground-truth [14].

• Region overlap (DICE). Using the estimated registration, we used the region
overlap (DICE score) between the GT organ surface segmentations after spatial
alignment.

• Rotation agreement. While widely employed for general medical registration
assessment, the previous metrics exhibit a notable limitation when applied to struc-
tures with strong symmetry, as illustrated in the case of the kidney (Table 1). Good
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DICE and TREs may result from registrations incorrectly flipping the kidney’s supe-
rior/anterior orientation. We introduced the rotation agreement metric to address
this issue, quantifying the proportion of cases where the rotational component aligns
with the superior/anterior orientation. Specifically, a rotational difference exceed-
ing 90 degrees, as measured via Rodrigues’ formula, indicates a disagreement. A
relatively high threshold was used so the metric would identify cases where the
registration is evidently wrong due to geometric symmetry.

3.5 Main results

The quantitative results are shown in Table 1. Considering rotation agreement, among
the automatic methods, Proposed-4L achieved 100%, substantially higher than the
next best method (PCA). Note that our ablation configuration Proposed-5L was in
third place, showing the importance of our design choices to handle the kidney’s sym-
metry. The other methods had rotation agreement between 27.12% (FPFH, RANSAC)
and 77.96% (DIP, TEASER). The best mean and median TRE was obtained by
Proposed-4L, with both BCPD and ICP refinements, with only approximately 1mm
higher than Manual+BCPD. With ICP refinement, Proposed-4L had a lower 3rd
quartile TRE than Proposed-5L, and a greater one with BCPD. Recall that the
landmark used to evaluate TRE was approximately in the center of the kidney. There-
fore, the TRE metric was not highly sensitive to large errors in rotation about the
center (unlike the rotation agreement metric). Concerning Dice, the highest mean,
median, and 3rd quartile scores were obtained by Proposed-4L. Refinement with
BCPD achieved superior performance with a mean DICE score of 83.30%.

Average Median 3rd quartile Average Median 3rd quartile Average
rot. TRE TRE TRE (std) Dice score Dice score Dice score (std)

agreement over folds over folds over folds over folds over folds over folds
in % (↑) in mm (↓) in mm (↓) in mm (↓) in % (↑) in % (↑) in % (↑)

Manual + BCPD 100 4.73 4.75 4.53 (0.79) 83.70 83.50 84.20 (1.80)
(Initialization method) + BCPD refinement

PCA 86.44* 6.13 7.56 6.54 (1.68)* 80.70 79.90 81.40 (2.40)*
(FPFH,RANSAC) 27.12* 11.55 13.28 11.70 (2.72)* 66.60 66.40 67.90 (3.50)*
(FPFH,TEASER) 44.07* 8.73 8.94 9.26 (1.31)* 72.90 71.30 72.70 (1.70)*
(DIP,RANSAC) 55.93* 15.62 20.09 15.46 (4.46)* 65.90 61.90 65.70 (5.40)*
(DIP,TEASER) 77.96* 5.81 7.96 6.61 (1.73)* 79.40 77.60 80.4 (3.10)*
Proposed-5L 77.97* 6.08 6.30 5.76 (0.85) 81.10 81.00 82.00 (2.40)*
Proposed-4L 100 5.58 6.43 5.52 (1.11) 82.00 81.80 83.30 (2.10)

(Initialization method) + ICP refinement
PCA 86.44* 6.50 7.15 6.32 (1.34)* 78.3 77.40 78.90 (2.20)*
(FPFH,RANSAC) 30.51* 12.09 12.58 11.41 (2.73)* 64.90 64.50 65.60 (2.30)*
(FPFH,TEASER) 47.46* 6.78 8.39 7.58 (1.62)* 73.00 72.80 73.10 (1.50)*
(DIP,RANSAC) 52.54* 14.65 15.10 12.67 (3.27)* 64.60 61.30 63.80 (5.90)*
(DIP,TEASER) 76.27* 5.30 5.82 6.14 (1.91)* 78.20 78.1 79.2 (2.2)*
Proposed-5L 77.97* 6.22 6.65 6.02 (1.18) 78.30 78.00 79.20 (1.8)*
Proposed-4L 100 5.44 5.46 5.45 (0.96) 80.60 79.5 80.70 (1.40)

Table 1 Quantitative comparison of registration methods. The (↑ / ↓) sign indicates whether
higher or lower values are better. The table is divided into three main parts: First, results using
Manual+BCPD (the reference used against the automatic methods). Second, results of global
methods combined with BCPD refinement. Third, results of global methods combined with ICP
refinement. The columns show the performance metrics for each configuration. Because
cross-validation was used, results are reported using inter-fold averaging. For refinement method,
bold shows the best-performing initialization/refinement method combination. Stars indicate if a
method’s performance is significantly different compared to the best combination (Wilcoxon Signed
Rank Test, p < 0.05).

Figure 2 shows the distribution of TRE and Dice scores for all global methods,
combined with either refinement method. One can see that the curves for Proposed-
4L are generally closest to the curve of Manual+BCPD (the reference) compared
to all baselines. Figure 3 shows the predicted landmarks masks in CT (left) and US
(right) images. GT masks are shown in light color, with predictions in the same color
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with a darker shade. One can see that there is generally closer agreement in CT
compared to US, caused by the poorer contrast and shadow artefacts in US. Also note
that the bottom pole in US wasn’t detected, and there is a significantly high prediction
error for one landmark (red - opposite the Renal Hilum). Nevertheless, the algorithm
described in 2.2.2 is robust to such problems due to the exhaustive minimal sampling
strategy. Such robustness has been demonstrated in Table 1, showing 100% rotation
agreement compared to GT.

Fig. 2 Performance of global registration methods using the TRE metric (first row) and the Dice
score (second row), with ICP (left) and BCPD (right) refinement. The graph shows the number of
cases with a TRE (resp. Dice score) lower or equal (resp. greater or equal) to a value for each method
on the dataset.

Fig. 3 Visualisations of automatic kidney landmark localization in a CT image (two left) and 3D
US volume (two right). The transparent balls represent the label maps corresponding to each ground-
truth landmark, and the opaque balls represent the label maps predicted by nnU-Net.

Figure 4 shows two registration examples with each global registration method
using BCPD refinement. These images were selected systematically by sorting the
kidneys in terms of registration difficulty and then showing the 50th percentile (the
median case - top row) and the 75th percentile (bottom row). Difficulty for each case
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was assessed by computing the median DICE score from all methods. One can see con-
sistently strong performance with Proposed-4L. Global registration computational
times ranged from under a second (Proposed-4L, Proposed-5L, PCA, FPFH) to
over 30 seconds (DIP, TEASER). Further details and time breakdowns are provided
in the supplementary material.

Manual PCA (FPFH,RANSAC) (FPFH,TEASER) (DIP,RANSAC) (DIP,TEASER) Proposed-5L Proposed-4L

K
D
Y

11
8L

K
D
Y

14
L

Kidney ground-truth annotation in US, Kidney ground-truth annotation in CT.

Fig. 4 Qualitative results showing registration performance for examples (KDY 118L) and
(KDY 14L) using checker-board visualization. Each column corresponds to an initial registration
method + BCPD refinement. Each image shows 4 annotations: green contour - the GT kidney seg-
mentation in CT, green point - the GT position of Landmark 1 in CT, red contour - the GT kidney
segmentation in US moved to CT coordinates according to the estimated registration, red point - the
GT position of Landmark 1 in US, moved to CT coordinates according to the estimated registration

4 Conclusion

We have introduced a novel global registration method for the kidney, applicable
across CT and 3D US modalities. Compatible with various registration refinement
methods, our approach demonstrates robustness and superior performance compared
to baselines. This method streamlines automatic registration and fusion imaging in
renal procedures, eliminating practical inconveniences associated with manual global
registration. Future research includes clinical validation with 3D US and freehand
3D (‘2D+t’) probes and extending its application to deformable Voxelmorph and
other image-based refinement techniques, eliminating organ segmentation needs in the
refinement step.
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