
RT-HCP: Dealing with Inference Delays and Sample Efficiency to
Learn Directly on Robotic Platforms

Zakariae El Asri1, Ibrahim Laiche1, Clément Rambour1, Olivier Sigaud1, Nicolas Thome1

Abstract— Learning a controller directly on the robot re-
quires extreme sample efficiency. Model-based reinforcement
learning (RL) methods are the most sample efficient, but they
often suffer from a too long inference time to meet the robot
control frequency requirements. In this paper, we address
the sample efficiency and inference time challenges with two
contributions. First, we define a general framework to deal with
inference delays where the slow inference robot controller pro-
vides a sequence of actions to feed the control-hungry robotic
platform without execution gaps. Then, we compare several
RL algorithms in the light of this framework and propose RT-
HCP, an algorithm that offers an excellent trade-off between
performance, sample efficiency and inference time. We validate
the superiority of RT-HCP with experiments where we learn
a controller directly on a simple but high frequency FURUTA
pendulum platform. Code: github.com/elasriz/RTHCP

I. INTRODUCTION

Reinforcement Learning (RL) is a powerful framework
for autonomous decision-making, enabling significant suc-
cess in various domains from video games [1] to robotics
control [2]. However, despite significant progress in simu-
lated environments, applying RL algorithms to real-world
robotic systems remains highly challenging due to practical
constraints such as sample inefficiency, high computational
demands, and inference delays [3]. To train an RL agent
directly on a physical robot, it must learn from limited data
while ensuring real-time inference at the control frequency
of the system. In simulated environments, these constraints
are often overlooked since agents can generate unlimited data
and the environment can wait for computations to finish. In
contrast, real-world robotic applications impose strict time
and data constraints, making direct learning on hardware
significantly more difficult.

This work aims to enable RL deployment on real robots
systems while addressing two fundamental constraints: (i) a
limited budget on training data, as real-world data collection
is costly and time-consuming, and (ii) real-time execution
constraints, where the limited processing power of embedded
hardware introduces inference delays that must be managed
to maintain synchronization with the system’s operating
frequency.

Model-free RL (MFRL) methods show strong perfor-
mance in simulated robotic tasks [2], but they are notoriously
sample-inefficient, requiring millions of interactions to learn
effective policies. This makes real-world deployment imprac-
tical, as data collection on physical robots is always time
consuming, often expensive, and even sometimes risky [3].

1Authors are with Sorbonne Université, CNRS, ISIR, F-75005 Paris,
France. Emails: {elasri, laiche, rambour, sigaud,
thome}@isir.upmc.fr

(a) Collect trajectories with d-step MPC

(b) Concatenate augmented states to restore the original MDP

Fig. 1: In the case of inference delay, the agent requires d
timesteps to compute the next action, causing it to miss d−1
environment steps. The d-step MPC framework allows the
agent to compensate for this delay by planning a sequence
of d actions instead of a single action, and to restore the
Markov property by augmenting the current state with the d
missed states and the d future actions.

An alternative approach, model-based RL (MBRL) [4], has
gained attention for its ability to learn system dynamics from
limited data and use predictive models for planning. Unlike
model-free methods, MBRL builds an internal representation
of the environment, allowing the agent to simulate potential
future states and make more informed decisions. A common
strategy in MBRL is Model Predictive Control (MPC), which
optimizes control actions over a finite horizon by leveraging
a learned forward model to predict future states [5], [6].
Since MPC requires solving an optimization problem at each
decision step, many approaches rely on the Cross-Entropy
Method (CEM) [7], a gradient-free stochastic optimization
technique, to efficiently search for optimal sequences of
actions, particularly in complex and nonlinear dynamics.

While MBRL significantly improves sample efficiency, it
comes at the cost of high computational demands, often
requiring considerable inference time to compute actions.
As a result, the agent may need multiple control timesteps
to compute an action, misaligning its decision-making cycle
with the system’s control loop. This results in execution
gaps where no new control commands are issued, potentially

degrading performance and stability. We refer to this problem
as inference delay, a fundamental challenge in deploying
MBRL for real-time control.

It has recently been shown that inference delays could be
drastically reduced by combining MPC with model-free RL
[6] and that an even better compromise between inference
time, sample efficiency, and performance could be found
by also leveraging prior knowledge about the dynamics of
the controlled system [8]. However, while these approaches
reduce inference delays, they do not eliminate them entirely.
A large inference time persists, especially in real-world
scenarios in which embedded computational resources are
limited, making inference delay a persistent challenge for
real-world robotic applications where real-time control is
critical.

Unlike transmission delays, which simply create a lag
between action selection and execution while maintaining the
control frequency of the system, inference delay arises from
the agent’s decision-making process, disrupting synchro-
nization between its decision-making cycle and the control
frequency of the system.

To address the challenge of inference delay in real-world
robotics, we present the following key contributions:

1) We introduce a delay-MDP problem to formally ac-
count for inference delay and propose a d-step MPC
framework for MBRL under inference delays, ensuring
real-time learning and control (see Figure 1).

2) We propose RT-HCP, a Real-Time Hybrid Control with
Physics-informed model, a novel approach that com-
bines MBRL, MFRL, and prior dynamics knowledge
to enhance real-world robotic learning (see Figure 2).

To experimentally validate our methodology, we use the
FURUTA pendulum [9], a rotary inverted pendulum that
is a well-known benchmark in control theory due to its
inherent instability and high-frequency control requirements.
This feature makes it particularly challenging to learn to
control in our context. We empirically demonstrate that
RT-HCP outperforms other model-based and model-free RL
approaches in learning to control the robot within a limited
amount of training data while satisfying real-time constraints.

II. RELATED WORK

The deployment of RL in real-world applications intro-
duces significant challenges [3], particularly with respect
to the inference time and the resulting delays in decision-
making processes.

Hybrid controllers: A recent line of research has emerged
that focuses on improving the model-based planning process
by integrating a policy [10], a Q-function [11], or both. TD-
MPC [6] combines both using a learned policy and Q-function
alongside a data-driven model, while PHiHP [8] applies a
hybrid physics-informed model. Though these approaches
help reduce inference delays in model-based methods, they
do not eliminate them: a large inference time remains, par-
ticularly in the context of real robotics where the embedded
computational resources are limited. Moreover, they have
only been validated in simulation. In contrast, our method

is designed to effectively address inference delays on a real
robot with strong computational constraints.

Augmenting state methods: Another line of research fo-
cuses on addressing delays within the MDP framework. Early
work by Katsikopoulos et al. classified delays into three
categories based on their occurrence: observation, action,
and reward delays [12]. They also introduced the concept of
delayed MDPs, where state augmentation helps restore the
Markov property. Several subsequent studies have built upon
this idea, applying state augmentation techniques to improve
RL performance under delays [13], [14]. These methods
typically augment the state with delayed actions to estimate
the current state, effectively addressing transmission and
execution delays, where state transitions of the environment
remain synchronized with the agent’s action frequency. How-
ever, this approach is ineffective for inference delays, where
the agent requires multiple time steps to compute an action,
leading to a decision-making frequency that differs from the
environment’s natural frequency. In this work, we tackle this
challenge by augmenting not only the state space but also
the action space, enabling the agent to better compensate for
inference delays.

Addressing inference delays: A third line of works
specifically tackles inference delays. Ramstedt et al. [15] in-
troduce a framework to handle inference delays in real-world
control tasks, while Xiao et al. [16] propose a continuous-
time formulation of the Bellman equations to account for
inference delays. However, these methods address inference
delays that are shorter than a single time step, making them
unsuitable for high-frequency control tasks where inference
time spans multiple steps. In contrast, our work addresses
a fundamentally different challenge: large inference delays,
where the agent requires multiple control steps to compute
an action.

Reinforcement Learning on Real Robots with Inference
Delays: More closely related to our work, several studies
have explored RL directly on real robots while addressing
inference delays. A common approach consists in repeating
the last executed action until a new action is computed,
which can lead to degraded performance in dynamic envi-
ronments. To maintain a fixed action frequency despite the
high inference times, an asynchronous RL approach has been
proposed, decoupling policy updates from action execution
[17]. More recently, staggered inference scheduling has been
introduced, where multiple inferences are performed asyn-
chronously [18]. However, the number of parallel inferences
scales with inference time and is particularly constrained
in robotic applications because of the limited resources of
embedded computing hardware. In contrast, our work adopts
a single-inference strategy designed to operate efficiently
with limited computational resources.

III. BACKGROUND

In this section, we briefly introduce the key concepts rel-
evant to our approach: Markov Decision Processes (MDPs),
Model Predictive Control (MPC) and the Cross-Entropy
Method (CEM).

Markov Decision Processes: Agent-environment interac-
tions are often framed into the Markov Decision Process
(MDP) framework, defined by the tuple (S,A, T , R, γ),
where S is the state space, A the action space, T : S×A →
Π(S) the transition function with Π(S) the set of probability
distributions over S, R : S × A → R the reward function,
γ ∈ [0, 1] is a discount factor. At each timestep t the agent
observes a state st ∈ S and picks an action at ∈ A. Then,
the environment returns a next state st+1 ∼ T (.|st, at) and a
scalar reward rt = R(st, at). The Markov property assumes
that the transition T (.|st, at) depends only on the current
state st and action at, and not on prior states or actions.

Reinforcement Learning (RL): The objective in RL is
to maximize the expected return

∑∞
t=t0

γt−t0rt at each time
step t0. In model-free RL, an agent directly learns a policy,
i.e. a mapping π : S → A that maximizes this expected
return. In contrast, in model-based RL, the agent learns a
model T̂θ of the transition function T , then often uses this
learned model T̂θ to predict st+1 as ŝt+1 = T̂θ(st, at).
The agent maximizes the expected return by optimizing a
trajectory.

Model Predictive Control and Cross-Entropy Method:
Model Predictive Control (MPC) is a control strategy that
uses a model to predict next states and optimize a sequence of
future control actions. MPC determines the best sequence of
actions over a finite time horizon to mitigate a compounding
error effect over time steps. The sequence of actions is
often optimized using the Cross-Entropy Method (CEM),
a gradient-free stochastic optimization algorithm commonly
used in RL, particularly for complex and non-linear dynamics
and reward functions. In the context of MPC, CEM itera-
tively samples action sequences, evaluates their performance,
and updates a distribution over the action space by focusing
on the best performing samples. This iterative process is
repeated until convergence or until a maximum number of
iterations is reached. Besides, MPC typically only executes
the first action in the sequence before planning again, but it
can also execute d actions, in which case we call it d-step
MPC. Leveraging d-step MPC is a key ingredient in the way
we deal with inference delays.

The efficiency of CEM is characterized by two key param-
eters: the number of iterations I and the population size P,
that directly impact the trade-off between inference time and
performance. In practice, larger values improve performance
but increase inference time. Therefore, introducing a method
to optimize this trade-off is crucial to achieve real-time
performance in real-world applications.

IV. METHODS

Inference delays occur when the time needed to determine
a control command (called ”action” below) is longer than
the period at which the system requires it. To deal with
inference delays, our method plans to obtain a sequence of
actions long enough to cover the inference delay and stores
these actions in a buffer from which the system can play
them. We describe this approach more formally below, then
we introduce RT-HCP, a real-time hybrid planning method

that integrates a physics-informed model with d-step MPC
and a learned actor-critic agent, and we show that RT-HCP
adequately deals with inference delays.

A. Planning to avoid execution gaps

Problem statement: Regarding time, a plan-based control
problem is characterized by the sampling period ∆t at which
the system needs to receive actions, a planning horizon Hp,
and an inference time THp

i that depends on the planning
horizon. Inference delay occurs when computing an action
takes longer than the sampling period, i.e. T 1

i > ∆t;
otherwise, there is no inference delay. Besides, we assume
that the inference time grows less than linearly with the
planning horizon, meaning that there exists a horizon H such
that TH

i < H.∆t; otherwise, real-time control becomes in-
feasible. So, to make real-time control feasible, the planning
horizon must be long enough, but not too long, as it affects
inference time, which must be kept short to maintain real-
time control.

Impact of Inference Delays: Inference delays cause
actions to be executed in states different from those in which
they were originally computed. Specifically, if an agent ob-
serves st but computes action at over d time steps, at is only
executed when the environment has already transitioned to
state st+d. In this delayed setting, when the agent computes
an action for a given state st, it misses the intermediate
states [st+1, . . . , st+d−1] over the next d−1 time steps. As a
result, if state transitions occur at intervals of ∆t, the agent’s
observations and actions are effectively spaced by d · ∆t.
This leads to partial observability of the original MDP, as the
agent loses information about the intermediate states between
its consecutive observations.

Our approach: To address inference delays and restore
the Markov property, we use a d-step MPC approach,
which allows the agent to select a sequence of actions
rather than a single action at each decision step. Then the
system can continue executing precomputed actions from a
buffer while new ones are being inferred, thereby avoiding
execution gaps. Additionally, we augment the observation
space by incorporating the sequence of missed states along
with the last sequence of actions that are not yet executed,
enabling the agent to better track system dynamics despite
the inference delay, as depicted in Figure 1a.

To formalize this process, considering an inference delay
of d time steps, we define an augmented state representa-
tion s′t = {sd·t, sd·t−(d−1), . . . , sd·t−1, ad·t, . . . , ad·t+(d−1)}
which consists of the current state of the environment, the
d−1 missed states during inference, and the last sequence of
actions not yet executed in the action buffer. At each decision
step, the agent uses the history of these actions to estimate the
future state sd·t+d, then it computes the optimal sequence of
actions a′t+1 = [ad·(t+1), . . . , ad·(t+1)+(d−1)] (see Figure 1a).

Figure 1b illustrates how these augmented states are
concatenated to restore the Markov property in the presence
of inference delays. This ensures that the agent maintains
a complete view of the system dynamics despite delayed
decision-making.

To generalize this approach, we introduce a delay-MDP
(S ′,A′, T ′, γ, d) from the original MDP. This delay-MDP
augments the action space A′ = Ad to plan multiple actions
ahead, and augments the state space S ′ = Sd · Ad to restore
the Markov property. The reward function is also augmented
to (R′ = Rd), and the transition function is updated to T =
T d.

Building on this delay-MDP, we introduce a framework
for MBRL under inference delays, ensuring real-time learn-
ing and control. Our approach unfolds as follows.

• First, we determine on the system adequate values for
∆t and Hp such that THp

i < Hp.∆t. Depending on the
context, ∆t can be imposed by the system or tuned. Besides,
Hp must be tuned in all cases to ensure real-time execution
and system stability.

• Once Hp is set, we measure THp

i on the system to
characterize computational constraints.

• Next, we set the execution horizon He with He
min ≤

He ≤ Hp and He
min = int

(
THp

i

∆t

)
+ 1. He

min is the
smallest number of actions needed to feed the system during
inference time THp

i .
• Finally, we apply d-step MPC with d = He. This

strategy ensures that a full enough action buffer is always
available while the system computes the next plan.

B. Real-Time Robot Control with Physics-Informed Models

Planning with imperfect models generally leads to com-
pounding errors, which degrade long-term decision-making.
While MPC helps mitigate these errors through frequent
replanning, it can introduce significant inference delays,
especially when requiring long planning horizons. Using d-
step MPC is a two-sided sword: from one side, it decreases
the replanning frequency, which helps deal with inference
delays. From the other side, it relies on longer open-loop
trajectories, which may accumulate prediction errors if the
model is inaccurate. Therefore, it is advantageous to i) reduce
the execution horizon of d-step MPC, and ii) use a robust
model able to accurately predict these transitions before
replanning.

To address these challenges, we introduce RT-HCP, a Real-
Time Hybrid Control framework that integrates a Physics-
informed model, d-step MPC, and a learned actor-critic
policy. RT-HCP is designed to balance shorter execution
horizons with robust trajectory predictions, ensuring both
real-time execution and stability. RT-HCP follows an iterative
real-time learning loop (see Figure 2):

1) Online planning and data collection: The agent selects
actions using hybrid planning, combining d-step MPC with
an actor-critic policy π, interacts with the real system and
stores transitions in Dreal.

2) Offline model and policy updates: Every N steps,
offline updates of the physics-informed model and policy
π are performed using real-world transitions from Dreal.

3) Learning in imagination: The updated model periodi-
cally generates synthetic transitions into Dim to further refine
π.

Fig. 2: Schematic description of RT-HCP

This real-time learning loop ensures that π is continu-
ously refined using both real-world and model-based data,
achieving higher sample efficiency while maintaining real-
time execution constraints. RT-HCP is particularly well suited
for real-time applications for two main reasons:

(i) Reduced Inference Time through Hybrid Planning.
The optimization problem in RT-HCP is expressed as:

A = arg max
at0:t0+H

(H∑
t=t0

γt−t0R(st, at) + γH−t0Q(st0+H)
)
,

subject to st+1 = T̂θ(st, at).
(1)

RT-HCP accelerates the convergence of CEM by using infor-
mative action candidates from π, reducing both the popula-
tion size and the number of iterations. In addition, it allows
shorter planning horizons Hp by using immediate reward up
to a reduced horizon Hp, and incorporating a Q function to
estimate the long-term return. Since the delay d depends on
the inference time, which itself strongly depends on both the
planning horizon Hp and the population size in CEM, this
hybrid planning strategy ultimately reduces delays.

(ii) Mitigating compounding errors with a robust
physics-informed model. Unlike purely data-driven models
that struggle with trajectory predictions outside their training
distribution, particularly for long horizons, RT-HCP uses a
physics-based prior that remains valid across the entire state
and action spaces. This allows RT-HCP to consistently predict
accurate trajectories, thereby reducing prediction errors for
the hidden states in the delay-MDP (see Figure 7).

Our approach builds upon PHiHP [8], which leverages a
physics prior in a hybrid planning scheme. However, RT-HCP
introduces key modifications to PHiHP, making it suitable
for real-time applications, particularly in how trajectories
are collected and used for learning. Specifically, PHiHP
relies solely on MPC for real data collection, requiring long
planning horizons that increase inference time and introduce
delays. In contrast, RT-HCP uses a hybrid planning approach
to reduce delays. In addition, PHiHP trains π exclusively on

model-generated rollouts without use of the available real
data. In contrast, RT-HCP jointly trains the model and π on
real data while iteratively refining π using imagined rollouts.

V. EXPERIMENTAL STUDY

A. Experimental setup

Environment and robotic platform: In this work, we
apply our method to a real FURUTA pendulum, an under-
actuated system, commonly used to evaluate control strate-
gies for nonlinear and unstable dynamics. The FURUTA
pendulum consists of a rotary arm actuated by a motor and a
pendulum attached to the end of the arm. The goal is to swing
up the pendulum from its downward position and stabilize it
upright while respecting mechanical constraints.

We define the system state at each time step t as st =
(αt, βt, α̇t, β̇t), where αt is the rotary arm angle, βt is the
pendulum angle, α̇t and β̇t are their angular velocities. The
control action is the applied voltage to the motor, which
determines the generated torque at = Vt.

Our experiments allow us to evaluate the proposed method
under real-world physical conditions, including stochastic
dynamics, computational constraints, and inference delays.

Fig. 3: The Furuta pendulum (schematic on the left, experi-
mental setup on the right)

RT-HCP implementation: To model the dynamics of the
Furuta pendulum, we consider a frictionless two-link rotary
inverted pendulum (RIP) model. We describe the physical
prior using the following equations of motion derived from
the Euler-Lagrange formulation:(

α̈

β̈

)
=

(
M−1(β)

((
τ(a)
0

)
−N(β, α̇, β̇)−G(β)

))
where:

M(β) =

(
J1 +

1
4mpL

2
p sin

2(β) 1
2mpLrLp cos(β)

1
2mpLrLp cos(β) J2

)
,

N(β, α̇, β̇) =
1

2
mpLp sin(β)

(
Lpα̇β̇ cos(β)− Lrβ̇

2

− 1
2Lpα̇

2 cos(β)

)
,

G(β) =

(
0

1
2mpgLp sin(β)

)
, τ(a) =

kt(−a− kmα̇)

Rm
.

The parameters mp, Lp, and Jp are the mass, length, and
moment of inertia of the pendulum respectively. The same
parameters for the rotor are mr, Lr, and Jr. kt, km, Rm, and
u are the motor torque constant, electromotive force constant,
electric resistance, and input voltage respectively.

Although this analytical model provides a first-principles
approximation of the FURUTA pendulum behavior, it does
not account for some real-world effects that significantly
impact the dynamics, such as: 1) joint friction and actuator
delays, which introduce resistance and latency in motion; 2)
encoder cable effects, where the physical cable connecting
the encoder to the base introduces additional damping forces
and tension, particularly during large oscillations. This re-
sults in nonlinear perturbations that alter the expected motion
of the system. Furthermore, the parameters of this system are
only approximately known, which introduces some errors.
To mitigate these errors, the RT-HCP model captures a
significant part of the dynamics with the prior model above,
while compensating for unmodeled effects through a residual
neural network. This network is implemented as a 4-layer
MLP with 16 neurons. For planning, we use CEM with I = 3
and P = 500, of which 50 from π.

Baselines: We compare RT-HCP against three state-of-
the-art RL methods. For a fair comparison, we adapt all
model-based baselines using our real-time inference delay
management approach:

• TD3 [19], a model-free RL algorithm known for its
strong performance in continuous control tasks. TD3 is fast
enough to avoid inference delays.

• RT-TDMPC [6], a state-of-the-art hybrid MBRL/MFRL
algorithm that performs local trajectory optimization (plan-
ning) with a learned world model and a policy. TD-MPC
relies on a purely data-driven model, whereas RT-HCP
uses a physics-informed model. We use the original hyper-
parameters and adapt the original implementation to support
early termination in the FURUTA pendulum environment.
• RT-PETS [4], a well-established model-based RL algo-

rithm that employs probabilistic ensemble models to generate
trajectory samples. PETS is known for its good sample
efficiency and robustness to model uncertainty. We use the
pytorch implementation from [5] with the original hyper-
parameters.

B. Experimental Results

In this section, we empirically measure the inference
time of all methods on the real robot to determine the
inference delay. Then we train these methods on the FURUTA
pendulum with a fixed budget of 200k training steps.
Extracting Real-Time Constraints: To assess the impact of
inference delay, We report in Tab. I the empirical inference
times Ti measured on the real robot for each method, as
a function of the planning horizon Hp, with the sampling
period ∆t = 20 ms. Ti includes both action selection and
online updates when present (e.g. for TD3), but excludes
offline updates. We also compute the corresponding inference
delay (d = Ti/∆t) and determine the minimum execution
horizon He

min, which ensures that a precomputed action
sequence covers the entire delay. Being model-free, TD3 has
the lowest inference time. In contrast, being model-based RT-
TDMPC, RT-PETS and RT-HCP require longer inference times
due to their trajectory optimization component.

TABLE I: Empirical measurements of inference time Ti,
inference delay d and execution horizon He as a function
of the planning horizon Hp for ∆t = 20 ms.

Method TD3 RT-TDMPC RT-PETS RT-HCP
Hp 1 5 15 5
Ti(ms) 16 ±1 47 ±2 156 ±2 36 ±4
delay 0,8 2,35 7,81 1,8
He

min 1 3 8 2

Learning Performance Under Real-Time Constraints: We
evaluate the learning performance of each method when
deployed directly on the robot under real-time constraints.
Figure 4 presents the evolution of episodic reward through-
out training. The results are averaged over 10 evaluation
episodes using a single policy trained with a fixed random
seed. The results show that RT-HCP achieves higher sample
efficiency and better overall performance than TD-MPC and
TD3. Specifically, RT-HCP reaches a threshold reward of 300,
which is sufficient to successfully complete the task, after
only 60k training steps (20 minutes). In contrast, TD-MPC
and TD3 require respectively 100k (33 mins) and 160k (53
mins) to reach the same performance level. Furthermore, RT-
HCP consistently outperforms TD3 and RT-PETS throughout
training while also outperforming TD-MPC in the early stages
and remaining competitive towards the end. This highlights
its effectiveness in real-world training conditions, making it
a robust choice for real-time robotic learning.

Fig. 4: Learning curves on the real FURUTA pendulum under
real-time constraints. Mean and 95% confidence intervals
over 10 evaluations. Colored stars indicate statistically signif-
icant differences using Welch’s t-test between RT-HCP (blue)
and each baseline, with the same color as the baseline.

Control Performance and Stabilization We compare the
control performance of each method at the end of training.
Figure 5 and Tab. II show that RT-HCP achieves the fastest
and most stable swing-up, reaching the upright position (α =
±π) earlier while staying closer to the center (β = 0). In
contrast, TD-MPC and TD3 require more time and exhibit
more oscillations, deviating further from the center before
stabilization. Furthermore, PETS fails to complete the task,
never reaching the upright position.

TABLE II: Average time required to reach the upright posi-
tion and the rotor deviation from the center after swing-up.
Mean and std. over 10 trajectories. RT-PETS never succeeds.

Method TD3 RT-TDMPC RT-PETS RT-HCP
Swing-up time (s) 2.45 ±0.51 2.28 ±0.80 +∞ 1.67 ±0.97
Rotor deviation (rad) 1.06 ±0.25 0.83 ±0.32 +∞ 0.53 ±0.28

Fig. 5: Representative trajectory for each agent, showing the
evolution of the pendulum (a) and rotor (b) angles over time.
Refer to the video for visualizations of the learned policies.

Impact of delay on performance: To examine how delays
affect performance, we compare the performance variation
across different planning horizons using the d-step MPC
framework. Figure 6 illustrates that RT-HCP degrades less
with increasing planning horizon compared to RT-TDMPC.
This difference can be attributed to two key factors. First,
RT-HCP benefits from smaller neural networks and a smaller
CEM population compared to RT-TDMPC, leading to faster
inference. Second, the physics-informed model of RT-HCP
allows it to predict future states more accurately, mitigating
the accumulation of prediction errors over time. Conversely,
RT-TDMPC relies solely on data-driven models, which are
more susceptible to compounding errors over time. Contrary
to TD-MPC and RT-HCP, RT-PETS is less effective with short
horizons, as it does not rely on a Q-function, and thus
requires longer horizons for good performance.

Fig. 6: Evolution of the average return as a function of the
horizon. Mean and 95% confidence interval over 10 trials.

Model Prediction Accuracy: To assess the accuracy of
the learned models, we evaluate their ability to predict
system trajectories given an initial state and a predefined

sequence of actions. As shown in Figure 7, RT-HCP provides
the most accurate trajectory predictions, closely matching
the ground truth, demonstrating the benefit of the physics-
informed model in reducing prediction errors. In contrast,
TD-MPC exhibits the largest deviations over time, leading to
cumulative errors that degrade long-term planning. Mean-
while, PETS achieves better trajectory predictions than TD-
MPC, demonstrating the effectiveness of its ensemble-based
approach in modeling system dynamics. However, despite
its improved predictive accuracy, PETS fails to complete the
swing-up task. This reinforces the idea that while accurate
trajectory predictions are important, a large inference time
can still prevent an agent from succeeding, even with a good
predictive model.

Fig. 7: Comparison of predicted trajectories versus ground
truth, given the same initial state and sequence of actions.
RT-HCP better approximates the system dynamics, closely
matching the ground truth, while TD-MPC exhibits larger
deviations over time.

VI. DISCUSSION AND CONCLUSION

Using our framework to deal with inference delays, we
could fairly compare the performance of model-free and
model-based reinforcement learning approaches directly on a
real robot. From these comparisons, we have learned the fol-
lowing: (i) model-free methods like TD3 benefit from a short
inference time but require a lot of samples; (ii) Model-based
RL methods like PETS improve sample efficiency but at the
cost of longer inference times, preventing high-frequency
control and leading to failure despite accurate predictions,
as inference delays remain a major challenge. (iii) Hybrid
methods such as TD-MPC partially reduce inference time but
do not eliminate it, causing persistent delays and making
them too sensitive to model inaccuracies for stable control.
In addition to these findings, we have presented RT-HCP as
an intermediate approach that shines in two aspects.

First, in terms of learning efficiency, the combination of
physics-informed and data-driven model acquisition signifi-
cantly improves the sample efficiency with respect to PETS
and TD-MPC. Second, the policy obtained at the end of the
learning process performs better than those of PETS and
TD-MPC because it allows it to provide actions at a higher
frequency. Under a constrained learning budget, which is

mandatory when learning on a robot, it also outperforms the
one from TD3, despite the shorter inference time of the latter.
Our study was limited to the context where the state of the
robot was directly accessible for control. In the near future,
we intend to extend our work to the case where the input
of the controller is an image, leveraging recent progress in
vision-based RL.

ACKNOWLEDGMENTS

The authors thank Pascal Morin for his help with the
robot. This research was funded, in whole or in part, by the
European Commission’s Horizon Europe Framework Pro-
gramme, under the PILLAR-robots project (grant agreement
No 101070381), and by l’Agence Nationale de la Recherche
(ANR) under the RODEO project (ANR-24-CE23-5886).

REFERENCES

[1] W. Ye, S.-W. Liu, T. Kurutach, P. Abbeel, and Y. Gao, “Mastering
atari games with limited data,” ArXiv, vol. abs/2111.00210, 2021.

[2] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel,
“Benchmarking deep reinforcement learning for continuous control,”
in International Conference on Machine Learning, 2016.

[3] G. Dulac-Arnold, D. Mankowitz, and T. Hester, “Challenges of
real-world reinforcement learning,” arXiv preprint arXiv:1904.12901,
2019.

[4] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep rein-
forcement learning in a handful of trials using probabilistic dynamics
models,” Advances in neural information processing systems, vol. 31,
2018.

[5] “pytorch implementation of PETS,” 2019. [Online]. Available:
https://github.com/quanvuong/handful-of-trials-pytorch

[6] N. Hansen, X. Wang, and H. Su, “Temporal difference learning for
model predictive control,” in ICML, 2022.

[7] P. T. de Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, “A
tutorial on the cross-entropy method,” Annals of Operations Research,
vol. 134, pp. 19–67, 2005.

[8] Z. El asri, O. Sigaud, and N. Thome, “Physics-informed model
and hybrid planning for efficient dyna-style reinforcement learning,”
Reinforcement Learning Journal, vol. 1, 2024.

[9] K. Furuta, M. Yamakita, and S. Kobayashi, “Swing-up control of
inverted pendulum using pseudo-state feedback,” Proceedings of the
Institution of Mechanical Engineers, Part I: Journal of Systems and
Control Engineering, vol. 206, pp. 263 – 269, 1992.

[10] T. Wang and J. Ba, “Exploring model-based planning with policy
networks,” arXiv preprint arXiv:1906.08649, 2019.

[11] M. Bhardwaj, S. Choudhury, and B. Boots, “Blending mpc & value
function approximation for efficient reinforcement learning,” arXiv
preprint arXiv:2012.05909, 2020.

[12] K. Katsikopoulos and S. Engelbrecht, “Markov decision processes
with delays and asynchronous cost collection,” IEEE Transactions on
Automatic Control, vol. 48, no. 4, pp. 568–574, 2003.

[13] B. Chen, M. Xu, L. Li, and D. Zhao, “Delay-aware model-based
reinforcement learning for continuous control,” Neurocomputing, vol.
450, pp. 119–128, 2020.

[14] S. Ramstedt, Y. Bouteiller, G. Beltrame, C. J. Pal, and J. Binas, “Rein-
forcement learning with random delays,” ArXiv, vol. abs/2010.02966,
2020.

[15] S. Ramstedt and C. J. Pal, “Real-time reinforcement learning,” in
Neural Information Processing Systems, 2019.

[16] T. Xiao, E. Jang, D. Kalashnikov, S. Levine, J. Ibarz, K. Hausman,
and A. Herzog, “Thinking while moving: Deep reinforcement learning
with concurrent control,” ArXiv, vol. abs/2004.06089, 2020.

[17] Y. Yuan and R. Mahmood, “Asynchronous reinforcement learning for
real-time control of physical robots,” 2022 International Conference
on Robotics and Automation (ICRA), pp. 5546–5552, 2022.

[18] M. Riemer, G. R. Subbaraj, G. Berseth, and I. Rish, “Enabling
realtime reinforcement learning at scale with staggered asynchronous
inference,” ArXiv, vol. abs/2412.14355, 2024.

[19] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approxi-
mation error in actor-critic methods,” in International conference on
machine learning. PMLR, 2018, pp. 1587–1596.

