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Abstract

This paper presents a novel nonlinear Reduced Order Model (ROM) that
combines Proper Orthogonal Decomposition (POD) with deep learning resid-
ual error correction. Deep learning is used for error correction in both the
projection and time integration phases of the ROM. This enables simulta-
neous correction within the POD subspace (error in the reduced subspace)
and outside (truncation error). The present hybrid ROM is trained using an
end-to-end neural Ordinary Differential Equations (ODE) framework, align-
ing the deep learning component with the continuous-time nature of the
governing equations. We evaluate its performance using well-studied test
cases: the viscous Burgers equation, the cylinder flow at a single Reynolds
number (equal to 100), as well as for Reynolds numbers ranging from 60 to
120 (parametric cylinder case) and the fluidic pinball in the quasi-periodic
regime. These non-chaotic test cases, are chosen to assess different aspects
of the method and its ability to accurately predict reproducible dynamics.
Our novel strategy outperforms several existing approaches both in terms
of accuracy and dimensionality reduction: POD Galerkin ROMs, a purely
data-driven approach using only autoencoders, and also state-of-the-art hy-
brid methods. Furthermore, it offers low computational overhead compared
to classical POD-based ROMs, making it attractive for complex 2D or 3D
systems.
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1. Introduction

Fluid dynamics is crucial in various industries, including automotive, avi-
ation, and weather forecasting. Except for trivial cases, closed-form solutions
do not exist [1], requiring spatio-temporal discretisations of the Navier-Stokes
equations to predict complex flow field behaviour. Although these methods
provide accurate predictions, they often demand computational costs exceed-
ing available resources for intricate problems [2], leading to ad-hoc models.
This compromises accuracy [3] and relies on parameters that are difficult to
determine [4].

Reduced Order Models (ROMs) provide an appealing alternative by re-
ducing governing equations to a lower-dimensional manifold. Among ROM
approaches, POD-Galerkin methods have gained considerable attention for
their ability to extract energetically dominant modes and yield low-dimensional
models that preserve constraints such as boundary conditions, conservation
laws, and symmetries. Rooted in the early works of [5] and [6], this method-
ology decomposes flow fields into a finite set of dominant orthonormal modes
via Proper Orthogonal Decomposition (POD), then projects the governing
equations onto these modes using Galerkin formalism. As the POD basis
optimally captures fluctuation variance around a base state, this approach
offers a systematic route to derive ROMs directly from Full Order Models
(FOM). However, only the most energetic modes are retained, while lower-
energy modes are discarded. Early studies [7] showed that accounting for
the influence of neglected modes is essential to ensure dynamical stability.
In particular, the introduction of a shift-mode significantly improved the ro-
bustness and stability of reduced models [8]. This insight spurred further
development of nonlinear Galerkin model calibrations [9, 10], with increasing
application to flow control [11, 12]. In parallel, Dynamic Mode Decompo-
sition (DMD) has emerged as a powerful technique for extracting coherent
spatiotemporal structures from fluid flows. Introduced by [13], DMD bridges
linear stability analysis and dynamic flow behaviour, complementing POD-
based methods and broadening the model reduction toolbox. DMD can also
be combined with POD (in place of the Galerkin projection step) to yield
fully data-driven models [14].

Despite widespread adoption and interpretability, these classical linear
approaches face challenges when applied to nonlinear and convective prob-
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Figure 1: Log-scale plot of the mean squared reconstruction error (MSE) for POD and
autoencoder models, computed on the Burgers equation dataset described in Section 5.1.
The autoencoder architecture matches that of our hybrid model for the Burgers equation
test case (architecture described in Appendix A).

lems in fluid mechanics [15]. In many cases, the linear subspace requires a
prohibitively large number of modes to accurately capture nonlinear effects
and avoid non-physical wavy modes. Such limitations have driven research
aimed at enhancing POD-Galerkin techniques, either through projection pro-
cedure modifications or by incorporating additional strategies to better cap-
ture nonlinear dynamics.

Recent research has shown that integrating deep learning autoencoders
(AE) into linear ROM frameworks may be a promising alternative [15, 16,
17, 18]. Due to their nonlinear nature, AE-based manifolds are an attractive
choice for handling nonlinear and convective problems. An introductory nu-
merical experiment compares projection error of POD versus AE depending
on retained modes for a dataset generated from viscous Burgers equation
simulations (cf. Figure 1). It illustrates AE ability to reach a given error
level for far smaller latent spaces than its POD counterpart, demonstrating
the method’s attractiveness. However, these recent deep-learning approaches
have limitations. By construction, they lack interpretability and are not guar-
anteed to comply with physical laws (conservation laws, boundary conditions,
etc) [19, 20]. The nonlinear latent space does not allow easy manifold visu-
alisation or simple projection of discretised operators in the reduced space,
meaning that the new model must be learnt in the reduced space or modelling
must occur by projecting back to the full subspace.
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This paper presents a novel hybrid approach that advances ROMs by
integrating the strengths of Proper Orthogonal Decomposition (POD) with
auto-encoder (AE) enhancements. Our model offers the following key con-
tributions:

• Balanced Interpretability and Compression: We retain the most
energetic modes using classical POD, ensuring physical interpretabil-
ity, whilst the AE encodes less energetic modes, capturing otherwise
discarded information in a compact latent space. This balance of inter-
pretability and nonlinear compression improves traditional POD meth-
ods. Unlike fully AE-based models, our approach uniquely preserves
the physical representativity of the reduced subspace.

• Time Integration and Hybridisation: Most dynamics are pre-
dicted physically by the ROM, preserving ROM advantages in cap-
turing physical quantities and dynamics. Our learned hybridisation,
driven by AE information, is distinct in its Markovian nature and avoids
challenges of methods relying on complex, time-dependent corrections
based on the Mori-Zwanzig formalism [21] (e.g., LSTMs [22], and tem-
poral convolutions [23, 24]). This simplifies implementation whilst both
correcting errors in POD subspace dynamics and modelling the com-
ponent in the orthogonal subspace.

• Reconstruction of Discarded Information: A separate contribu-
tion is the hybrid POD-AE latent space, which not only addresses
the closure problem for the POD subspace but also reconstructs the
dynamics of information typically discarded by POD mode selection.
Our method recovers coefficients and dynamics of discarded modes,
enhancing accuracy of both dynamics prediction and reconstruction.
This allows our model to better capture small-scale phenomena, which
would otherwise be lost, significantly improving performance as shown
in the results section.

• Neural ODE for Time-Continuous Integration: Neural ODEs
provide a natural and well-suited framework for our approach, as they
inherently align deep learning with the differential nature of physical
systems. However, this work focuses on exploring the hybrid nature
of our proposed method, rather than evaluating whether Neural ODEs
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are the optimal framework. Consequently, we do not specifically assess
their impact on accuracy and robustness.

Whilst the results demonstrate that this hybrid design addresses many limi-
tations of purely POD-Galerkin or purely data-driven systems, two practical
considerations remain. First, the method remains intrusive: it requires ac-
cess to discretised operators and is therefore inapplicable when these are
unavailable in a given FEM code. Second, although the architecture main-
tains a clear separation between POD and AE contributions during both
dimensionality reduction and dynamics prediction (Section 4), the neural
correction can, in principle, introduce arbitrarily large updates that override
the physics-based ROM. However, since this correction term is explicit and
modular, safeguards such as amplitude clipping or energy-budget constraints
can be incorporated to enforce physical admissibility but were not necessary
in the four conducted experiments.

2. Related Work

To contextualise this work, this section reviews key literature methods
that use deep learning to enhance traditional POD-Galerkin ROMs. We
consider two main approaches. The first retains linear POD embedding
for state reduction and integrates neural network-based closure models to
correct errors within the POD subspace, capturing the effects of truncated
modes without explicit representation. The second employs nonlinear encod-
ing through autoencoders, replacing POD with complex, data-driven embed-
dings, and explores techniques for modelling latent space dynamics, including
neural ODEs and recurrent neural networks. We examine these approaches
and their variants in detail and finally compare our hybrid model to existing
state-of-the-art methods, highlighting key differences in architecture, perfor-
mance, and computational efficiency.

2.1. Methods using POD based reduction
Methods using only POD-based projection adhere closely to traditional

POD-Galerkin ROM methodology. Due to linear encoding, intrusive POD-
Galerkin ROMs can still be used, as they access the operator matrix from
the numerical solver and project the operator into the reduced subspace. As
previously mentioned, these intrusive approaches have several advantages.
However, the reduction achieved is generally suboptimal. Despite having
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a model in the reduced subspace, the resulting ROM will not account for
coupling terms between unretained and retained information. All proposed
approaches are formulated as closure models to account for discarded physics
effects on reduced system dynamics. Deep learning can model complex non-
linear phenomena and therefore seems suitable for this low-dimensional clo-
sure. This general framework is common for all methods using POD solely
for dimensionality reduction. However, closure modelling approaches vary;
we now present the three main approaches.

Closure modelling via reduced-space dynamics. A distinct class of closure
modelling methods seeks to account for the influence of discarded modes
on resolved dynamics without reconstructing their state. These approaches
instead apply physically inspired or data-driven corrections within the re-
tained POD subspace. A representative overview is given in [25], which
compares four physically motivated closure models—originally developed for
large eddy simulation—adapted to operate within the retained POD space.
More recent extensions, such as [26], replace physics-based closures with neu-
ral networks. Both works adopt a two-tier Variational Multiscale (VMS) for-
mulation, where the retained POD basis is split into large and small scales,
and the closure term acts exclusively on the small-scale component. Due to
the structural similarity with our two-tier POD strategy, we focus here on
VMS-type approaches. Our method also partitions the POD space into two
blocks, but with a different aim. In VMS, the decomposition is used to con-
fines closure modelling to the lowest-energy retained modes. In contrast, our
decomposition targets increased information density via further compression
in the latent space. Moreover, unlike VMS, our correction terms can act on
both high- and low-energy POD modes. This flexibility proves useful when
dominant POD modes alone poorly approximate the system’s true dynamics,
as in strongly parametric regimes or under severe under-resolution.

Mori-Zwanzig based closure modelling. Many methods leverage the Takens
theorem and Mori-Zwanzig formalism to address closure modelling in ROMs.
The Takens theorem states that system dynamics can be reconstructed from
time-delayed observations of a single variable, whilst the Mori-Zwanzig for-
malism provides a framework for describing the evolution of variable subsets
in dynamical systems, accounting for unresolved variables through memory
terms. Applied to ROMs, these principles aim to recover discarded mode
effects on retained subspace dynamics. The required time-delayed observa-
tions and complex, nonlinear transformations suit deep learning approaches
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well. Two notable implementations are LSTM-ROM [22] and CDROM [23].
LSTM-ROMs use Long Short-Term Memory networks to correct ROM errors,
whilst CDROM employs convolution in time with learned exponential kernels
to create memory terms capturing discarded mode effects. CDROM offers
improved interpretability and leverages neural ODEs for time continuity. An-
other pragmatic approach to incorporating memory effects in reduced models
is reservoir computing. Fixed recurrent architectures—conceptually related
to RNNs, with some analogies to Koopman-inspired embeddings—capture
memory effects. Importantly, memory effects are obtained without training
internal reservoir dynamics, as only the decoding map is learned. Reservoir
computing models are commonly deployed on low-dimensional latent spaces,
such as those obtained via proper orthogonal decomposition in fluid dynamics
applications [27], since direct application to the full state is typically imprac-
tical, and reservoir dimension commonly exceeds input dimension. However,
these approaches face challenges. The Takens theorem generally requires
significantly more time-delayed observations than system dimensionality, po-
tentially leading to inefficient recovery of discarded dynamics. Furthermore,
initialisation poses difficulties: simulations require not only initial conditions
but also a sequence of projected dynamics from a full-order model to initialise
memory terms. The optimal sequence length is often unclear and depends
on the learned time-dependent scheme, complicating initialisation for both
LSTM-ROMs and CDROM. We propose an alternative to relying on complex
time-dependent dynamics and memory terms. We directly encode discarded
modes using more powerful autoencoders, representing unretained informa-
tion without requiring time-delayed observations. This approach adheres
more closely to ROM methodology, with encoding and decoding occurring
simultaneously with traditional ROM processes.

Slaved modes hypothesis for closure modelling. A third approach, introduced
by Barnett et al. [28], employs a two-tier POD strategy for closure modelling.
Known as Neural-Network-Augmented Projection-Based Model Order Re-
duction (PROM-ANN), this method splits the leading POD modes into two
sets: the first contains the most energetic modes, while the second includes
lower-energy modes generally discarded in ROMs but believed to significantly
influence the dynamics of the first set. The approach assumes that lower-
energy mode dynamics are slaved to dominant ones, with a neural network
modelling a nonlinear mapping from dominant to lower-energy mode ampli-
tudes. This relation is used to reconstruct the lower-energy modes, and the
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coupling term modelling the effects of the lower energy modes on more ener-
getic ones is done via physics based hyper reduction. However, These slave-
mode approaches assume the system’s full dynamics lie on a manifold fully
parametrised by the leading POD coefficients, so that projection onto these
modes uniquely determines the evolution of the higher-order modes. This
is a strong, often non-trivial assumption, particularly in flows with complex,
multiscale modal interactions. The Mori-Zwanzig formalism [21] circumvents
such assumptions by showing that the influence of discarded modes can be
captured via an additional source term involving time-delayed dominant (re-
tained) modes [21, 23, 22, 29]. While the slaved-mode framework offers a
cost-effective solution—especially when aided by neural networks—its gen-
eral applicability remains uncertain. Our method adopts a two-tier POD
strategy similar to PROM-ANN, but crucially does not rely on the slaved-
mode hypothesis. Rather than inferring discarded modes from retained ones,
we encode and model the dynamics of typically discarded information directly
via a neural network. This allows us to represent subspace dynamics explic-
itly, without assuming functional dependence on retained modes. Another
distinction is that PROM-ANN continues to predict dynamics within a trun-
cated POD space after reconstructing lower-energy modes. As demonstrated
in Section 7, this approach can be inaccurate for certain problems, whereas
our method mitigates truncation limitations through learned closure.

2.2. Methods using Auto-Encoders for dimensionality reduction
Auto-encoder-based methods offer an alternative to POD for dimensional-

ity reduction in ROMs. The nonlinear encoding allows better compression of
system dynamics, as illustrated in Figure 1. Convolutional autoencoders fur-
ther improve representation capacity, leveraging their proven parameter effi-
ciency and effectiveness from computer vision literature [30]. When properly
trained, the reduced state can potentially capture all relevant physics, elim-
inating the need for explicit closure modelling. However, nonlinear learned
encodings are generally incompatible with classical projection-based reduced-
order models such as POD-Galerkin. This limitation prompts alternative
physics-informed approaches to model reduced space dynamics. Examples
include Least-Squares Petrov–Galerkin (LSPG) formulations [31, 32, 33] and
PDE-constrained optimization techniques like Physics-Informed Neural Net-
works (PINNs) [34]. While such methods can handle nonlinear latent repre-
sentations, they are generally more complex and computationally intensive.
In contrast, projection-based ROMs—despite potentially costly offline assem-
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bly—offer efficient, interpretable, and training-free online evaluation through
standard linear algebra. Two main strategies have emerged to address this
challenge:

Non-intrusive relearning of dynamics. Fully data-driven ROMs bypass pro-
jection entirely and learn latent dynamics from data. Various autoencoder
architectures have been proposed, including Multi layer Perceptron autoen-
coders [35], convolutional autoencoders [36, 37, 38], and attention-based
models combined with recurrent networks like ConvLSTM [39], aiming to
capture complex spatial and temporal patterns. To address modelling high-
dimensional 2D or 3D data using simple MLPs, [40] introduces POD-based
preprocessing that retains numerous modes before feeding the reduced rep-
resentation to an MLP autoencoder. This enables compact latent encodings
whilst simplifying the learning task. While these approaches differ in ar-
chitecture and preprocessing, they share a common trait: latent dynamics
must be fully relearned, with no physical structure preserved. Consequently,
they may suffer from poor generalisation or violate physical principles like
energy conservation. In contrast, our method blends physics-based structure
with deep learning flexibility: we retain large-scale POD modes and apply
an autoencoder only to intermediate-energy level modes. This limits relearn-
ing to a subset of dynamics whilst maintaining interpretability and ensuring
accurate reconstructions in physically structured latent spaces.

Physics-based manifold learning. The method introduced by Lee and Carl-
berg [31] first pre-trains an autoencoder on available data, then applies a
Least-Squares Petrov-Galerkin-inspired approach to derive a physics-based
model. This model minimises the residual to identify a latent vector that
best satisfies the governing equations. However, it typically requires residual
evaluation in the full physical space, which can undermine the computational
benefits of model reduction. To address this, hyper-reduction techniques de-
code only at selected spatial locations rather than the entire domain. While
this lowers computational cost, it introduces approximation errors in the
residual, as examined in studies of hyper-reduction methods such as DEIM
and ECSW [41, 42, 43], which analyse trade-offs between accuracy and effi-
ciency in reduced-order models. Our method differs by employing a hybrid
approach that jointly learns dynamics estimation with the encoding and de-
coding processes. This promotes consistency between the smoothness and
regularity of the encoding and the model’s representativity and reconstruc-
tion capability. Moreover, our method avoids decoding in the full space or
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relying on hyper-reduction at each timestep for dynamics estimation, thereby
eliminating the associated computational overhead and approximation errors.

Model Projection
method

Modelling
method

Time
continuous

Time delayed
observations

LSTM-ROM Linear Learnt No Yes
CDROM Linear Hybrid Yes Yes

PROM-ANN Linear Physics-based Yes No
Manifold Learning Nonlinear Physics-based Yes No
CAE-GPR ROM Nonlinear Learnt Yes No

Lusch and al. Nonlinear Learnt Yes No
Our Approach Hybrid Hybrid Yes No

Table 1: Key aspects of existing approaches vs. our new hybrid model.

3. Background

3.1. Scientific Context and Problem Statement
Throughout, UPPERCASE denote matrices, bold lowercase denote vec-

tors, and regular lowercase denote scalars.
We consider nonlinear partial differential equations (PDEs) discretised by

finite elements in the semi-discrete weak form (1):

Mdtw = Lw + B(w,w) (1)

Here M is the mass matrix, and w a high-dimensional state vector. We
assume w is homogeneous with respect to all boundary conditions, i.e., if
w satisfies them, then so does λw for any scalar λ. The dynamics involve
two weak-form operators: L (linear) and B (bilinear). Whilst the proposed
method applies to arbitrary nonlinearities N (w), we focus on problems gov-
erned by quadratic nonlinearities. This form covers many fluid-mechanics
equations, including incompressible Navier-Stokes equations in perturbative
form (e.g., with respect to the base flow), simplified 1D models like viscous
Burgers equations, and certain compressible Navier-Stokes problems (under
suitable variable changes) [44]. Moreover, many nonlinear PDEs encountered
in engineering can be lifted to quadratic form through variable transforma-
tions [45], making this formulation broadly applicable.

Although classical methods can resolve such systems, our goal is to com-
pute new solutions efficiently—under changes in initial condition w(t = 0)
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or parametric variations in L and B. The challenge is developing ROMs
that accurately capture the system’s behaviour and solution space whilst
substantially reducing computational cost. Although this work focuses on
bilinear weak formulations, the proposed approach can be extended to more
general nonlinearities using hyper-reduction techniques. This perspective is
discussed in section 9, where we outline how such extensions could support
more complex systems whilst maintaining computational efficiency.

3.2. POD-based ROM methodology
We construct the ROM about a steady base flow. Let w = w0+w′ where

w0 is the base flow (solution of the stationary Navier–Stokes equations for
the chosen parametrisation and problem) and w′ the perturbation. In weak
form, the base flow satisfies Lw0+B(w0,w0) = 0. Substituting into (1) and
using this relation gives:

Mdtw
′ = L′w′ + B(w′,w′), (2)

with L′w′ = Lw′ + B(w0,w
′) + B(w′,w0) the linear part of the governing

operator. The ROM is derived from equation (2) and in the following, w′

will be noted w for brevity. This choice affects the parametric formulation
discussed in 8, since w0 depends nonlinearly on the parameter.

The ROM is obtained by projecting the governing equations onto a well-
chosen reduced orthogonal basis. Such a basis is obtained using POD by
stacking snapshots of the state vector w′ into a data matrix X. The spatial
and temporal POD modes relate to the left and right singular vectors of
X, respectively, ranked by decreasing singular value. In practice, they are
obtained by first computing the covariance matrix C, defined as:

C = X⊤MX (3)

where we have assumed that the mass-matrix M is positive, symmetric and
corresponds to a relevant correlation measure between snapshots. An eigen-
decomposition of C then yields the matrix Ψ containing all temporal POD
modes [15]:

CΨ = ΨΣ (4)

with Σ the diagonal matrix containing the eigenvalues associated with each
eigenvector (each column) of Ψ, ranked by decreasing order [15]. The spatial
POD modes are then given by

Φ = XΨΣ− 1
2 (5)
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The spatial POD modes are orthonormal: Φ⊤MΦ = I.
We obtain the following relation, with φi the ith column of matrix Φ,

a the vector containing all POD coefficients and ai the coefficient of the ith

POD mode:

w′ = Φa =
Nt−1∑
i=0

φiai (6)

To form the reduced basis, eigenvectors associated with the r-largest
eigenvalues (4) are selected, as they form the r-dimensional linear subspace
capturing most of the snapshot variance. This yields a truncated eigenvector
matrix Ψr and eigenvalues matrix Σr. The truncated spatial POD basis is
then given by equation (5) as the columns of Φr = XΨrΣ

− 1
2

r .
The governing equations of the Full Order Model (FOM) are projected

onto Φr, yielding the following reduced PDE:

dta = Φ⊤
r L′Φra+ Φ⊤

r B(Φra,Φra) (7)

with Φ⊤
r Mw = a the projection of a snapshot from the physical space to the

reduced basis. We can then compute the ROM as:

dtai = ROMi(a) (8)

where

ROMi(a) =
r−1∑
j=0

Lijaj +
r−1∑
j,k=0

Nijkajaz

Lij =φ⊤
i L′φj, Nijk = φ⊤

i B(φj,φk)

(9)

3.3. Projection and reduced trajectory error
The discrepancy between a Galerkin-POD-based ROM and the Full order

model (FOM) is due to two sources of error: the projection error and the
reduced trajectory error. Truncating the spatial POD mode matrix leaves a
residual term w̃ that reads:

w̃ = w −wPOD, with wPOD = (w0) + ΦrΦ
⊤
r M(w −w0) (10)

The truncation error stems from the fact that the FOM solution evolves in
a space wider than the reduced linear subspace associated with wPOD. In
addition to this error, the unrepresented modes affect the time evolution of
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wPOD due to the coupled nature between w̃ and the latter. In particular, the
term Φ⊤

r L′w̃ is generally non-zero and the projected nonlinear term may be
expressed by decomposing Φ⊤

r B(w,w) as:

Φ⊤
r B(w,w) =Φ⊤

r B(wPOD,wPOD) + Φ⊤
r B(w̃, w̃)

+ Φ⊤
r B(wPOD, w̃) + Φ⊤

r B(w̃,wPOD)
(11)

Only the first term of the right-hand side of equation (11) is accounted for
in the POD-based ROM dynamics whilst the others are neglected. These
approximations only hold if the neglected terms are indeed weak, which is
true only if the amplitude decay in ai is sufficiently strong with respect to
coefficients arising in L′ and B (which cannot be guaranteed). Therefore,
not accounting for w̃ leads to an erroneous trajectory in the reduced linear
subspace, with an error on wPOD that accumulates over time. We introduce
a new method where a nonlinear autoencoder is used to reduce both the
truncation and the reduced trajectory error (whilst other recent similar works
such as [23] only focus on the reduced trajectory error).

4. Proposed Approach

4.1. AE-augmented POD-based method
Our goal is to retain ROM efficiency whilst recovering FOM accuracy.

Rather than relying solely on the POD subspace, we augment it with an
autoencoder to recover dynamics commonly lost through truncation. The
novelty lies in hybridising classical POD with deep learning, balancing phys-
ical interpretability with data-driven expressive power.

The model comprises three components: a hybrid POD–autoencoder en-
coder, a hybrid time integration module, and a hybrid decoder (Figure 2).
This structure merges POD and deep learning strengths throughout the mod-
elling pipeline.

Dimensionality reduction follows a two-tier strategy. The most energetic
modes are preserved using classical POD to ensure interpretability and en-
able physics projection. A number of less energetic modes are nonlinearly
encoded using an autoencoder into a compact latent representation. This hy-
brid latent space enables accurate reconstruction of fine-scale features with
minimal loss.

Time integration combines a POD-Galerkin ROM with deep learning.
The POD component predicts coarse dynamics, whilst a feedforward neural
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Figure 2: Proposed hybrid model architecture. In the reduced basis projection, we use
traditional POD augmented with extra modes from nonlinear encoding of unretained POD
information. Time integration employs a hybrid neural ODE, combining POD-based ROM
output with neural network corrections. Finally, in decoding, time-integrated reduced
states are mapped to the physical state using both POD mode representation and nonlinear
decoding of unretained information.

network corrects errors in the POD subspace and learns full dynamics in the
AE subspace. This hybrid derivative estimation, shown in the centre block
of Figure 2, fits naturally within the Neural ODE framework [46], providing
continuous and stable time-stepping aligned with physical systems.

The right block of Figure 2 depicts the hybrid decoder, which reconstructs
physical states at each time step. It preserves retained POD modes and maps
the AE latent space to second-tier POD modes. Due to POD orthogonality,
only the AE subspace corrects information beyond retained linear modes.

4.2. Model architecture
This section details the three components outlined above. Figure 2 pro-

vides a visual overview of the model structure, whilst Algorithm 1 offers a
detailed, step-by-step description of the method and training process.

Encoder. The encoder transforms the state vector w(t) into a reduced state(
a∥(t), z(t)

)
following (time dependence omitted to simplify notation):

a∥(t) = Φ⊤
∥ Mw(t)

z(t) = Encoder(a⊥(t), θE), a⊥(t) = Φ⊤
⊥Mw(t)

(12)
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This reduction uses a two-tier POD strategy:

• The first tier POD, Φ∥ in equation (12), retains only the most energetic
POD modes. Coefficients a∥(t) form an orthonormal basis representing
a reduced subspace for Galerkin projection.

• The second tier, Φ⊥ in equation (12), retains a large number of lower-
rank modes (but not all). These modes will not be modelled physically.
Coefficients a⊥(t) are further compressed using neural network encoder
Encoder(a⊥, θE), resulting in substate z containing information absent
from the first-tier POD subspace.

This approach provides accurate yet simple, physics-based representation of
energetic large-scale structures. Given fixed computational budget, we adopt
pragmatic two-tier(+discarded) decomposition. The first tier contains large-
scale modes of primary physical interest. The second tier gathers POD modes
that interact most with the first tier and are necessary for physics reconstruc-
tion; these often lack interpretability and can be numerous, so our method
represents them compactly via nonlinear compression, with coefficients a⊥
in the M -orthogonal complement of the first-tier subspace. The discarded
set comprises remaining modes—very low-energy content not contributing
meaningfully to targeted quantities—so concatenation [a∥; a⊥] defines a re-
duced state smaller than full-order state w. This organisation preserves the
original trade-off: we prioritise traditional linear POD for leading dynamics
and interpretability, but allocate remaining budget to nonlinear encoders that
better compress residual interactions and small-scale content. The encoder
method is described in lines 9–11 of Algorithm 1.

The two-tier POD approach offers key advantages over using nonlinear
encoders on raw physical space data:

• The neural network encoder size is independent of the physical state
vector dimension, scaling instead with POD mode truncation level,
offering favourable computational scaling for larger systems.

• Original simulation data on complex unstructured 2D meshes poses
challenges for traditional autoencoders. Whilst Graph Neural Networks
handle such data, their complexity makes implementation challenging.
POD encoding transforms mesh data into simplified one-dimensional
vectors, making simple multilayer perceptron architectures suitable.
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• POD preprocessing acts as an adjustable spatial frequency filter, cap-
turing dominant flow structures whilst reducing small-scale fluctuation
influence. This retains qualitatively relevant information and could
benefit noisy or turbulent data applications, though not explored here.

• Empirical results indicate these advantages lead to improved model
smoothness and accuracy.

Time Integration. We employ neural ODE framework for time integration.
The deep learning problem is formulated as a differential equation, where
f(w(t), θ) represents a hybrid model and hat-quantities ·̂ represent estimated
dynamics:

dtŵ(t) = f(ŵ(t), θ) (13)

To integrate the time derivative from t to t + ∆t, we employ numerical
methods:

ŵ(t+∆t) = ŵ(t) +

∫ t+∆t

t

f(ŵ(τ), θ)dτ (14)

The reduced state derivative is computed differently for each subspace
(see line 12 of Algorithm 1). In the POD subspace, the ROM estimates dta∥
using the POD–Galerkin model (Section 3.2). Simultaneously, neural net-
work NN∥ acts as closure model, correcting this estimate using inputs from
both POD and autoencoder subspaces for comprehensive dynamics correc-
tion. In the orthogonal autoencoder subspace, dynamics are entirely neural
network-driven. Network NN⊥ computes dtz using information from both
subspaces, enabling nonlinear interactions. Although lowest-energy modes
are discarded, residual influence on retained dynamics can be learned im-
plicitly from data by the end-to-end model. Complete derivative estimation
is:

dtâ∥(t) = ROM(â∥(t)) + NN∥(â∥(t), ẑ(t), θNN)

dtẑ(t) = NN⊥(â∥(t), ẑ(t), θNN)
(15)

where ROM(â∥(t)) is defined in (9), NN∥(·) and NN⊥(·) denote network out-
puts (correction for dtâ∥ and estimate of dtẑ, respectively). Term ROM(â∥(t))
accounts for autonomous dynamics within the POD subspace. Term
NN∥(â∥(t), ẑ(t), θNN) captures coupling dynamics between POD and autoen-
coder subspaces. Finally, NN⊥(â∥(t), ẑ(t), θNN) represents full orthogonal
subspace dynamics, including autonomous and coupling effects. This hy-
brid approach leverages POD-Galerkin interpretability whilst incorporating
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neural network flexibility. Our model estimates all three coupling terms out-
lined in section 3.3, often neglected in traditional ROMs or only partially
considered by methods working solely in POD subspace [22, 23, 28]. With
derivative estimation explained, time-integration from t to t+∆t uses neural
ODE method. Initial conditions can be ground-truth quantities (a∥(t), z(t))
or predicted ones (â∥(t), ẑ(t)).

Decoder. After time integration, the predicted full state is recovered follow-
ing:

ŵ(t) = Φ∥â∥(t) + Φ⊥â⊥(t), â⊥(t) = Decoder(ẑ(t), θD) (16)

Autoencoder latent variable dynamics are first decoded using neural network
Decoder(ẑ(t), θD) to recover â⊥. First and second-tier coefficients are pro-
jected back to full physical space using POD projection matrix. This hybrid
decoding enforces orthogonality as latent variable decoding remains orthog-
onal to first-tier POD modes. The decoder maintains POD orthogonality
by keeping predicted retained POD modes unchanged whilst the neural net-
work decoder affects only second-tier POD modes. Due to orthogonality, the
decoder cannot output information in the first-tier POD subspace. Conse-
quently, perfect reconstruction requires accurate prediction of both first-tier
and second-tier POD mode dynamics. The decoder architecture is a multi-
layer perceptron, typically with symmetric structure to the encoder. In some
variants, the decoder contains additional parameters (e.g., one extra layer) to
enhance expressiveness, reflecting the greater complexity of decoding tasks
where more expressive decoders frequently improve performance.

4.3. Model training
In the previous section, we outlined the model architecture. However, in

deep learning, architectural design and function approximation capabilities
represent only part of the task. Training the model—i.e., tuning the weights
to achieve the desired outcome—requires numerous decisions. This section
outlines those choices.

Learning problem formulation. The learning task is defined by input-output
pairs, where the input is the initial condition and the output is the cor-
responding trajectory. Specifically, we consider ground truth trajectories
w(t), post-processed using our two-tier POD decomposition to obtain time-
dependent coefficients a∥(t) and a⊥(t). The model input,

(
a∥(0), a⊥(0)

)
, rep-

resents the POD coefficients of the initial condition. The model output is the

17



Algorithm 1: Hybrid model and training
# Initialisations #

1 Load M,A,N /* Finite element mass matrix and operators
2 Load Φ∥,Φ⊥ /* two tier POD modes matrices
3 Load ROM() with (Φ∥, A,N) /* initialise the ROM
4 Initialise NN() /* time integration network
5 Initialise Encoder() /* encoder network to encode at⊥
6 Initialise Decoder() /* decoder network to decode zt

7 for epoch = 0 : Nepochs do
8 Loss = 0 /* Reinitialise Loss
9 for wm(0 : T ), m = 0 : Nexamples do

# Encoding #

10 a∥(0 : T ) = Φ⊤
∥ Mw(0 : T ) /* tier 1 POD Reduction

11 a⊥(0 : T ) = Φ⊤
⊥Mw(0 : T ) /* tier 2 POD Reduction

12 z(0 : T ) = Encoder(a⊥(0 : T ), θE) /* non linear reduction

# Time integration #

13

[
â∥(0 : T )
ẑ(0 : T )

]
=

[
a∥(0) +

∫ T

0

[
ROM(â∥(t)) + NN∥(â∥(t), ẑ(t), θNN )

]
dt

z(0) +
∫ T

0
NN⊥(â∥(t), ẑ(t), θNN ) dt

]
# Decoding #

14 â⊥(0 : T ) = Decoder(ẑ(0 : T ), θD)
15 ŵ(0 : T ) = Φ∥â∥(0 : T ) + Φ⊥â⊥(0 : T )

# Loss and back propagation #

16
Loss =Lrecon(â∥(0 : T ), a∥(0 : T ), â⊥(0 : T ), a∥(0 : T ))

+ λLregularisation(ẑ(0 : T ), z(0 : T ))

end
17 θNN = θNN − α∂Loss

∂θNN
/* Back propagation and weight update

18 θE = θE − α∂Loss
∂θE

19 θD = θD − α∂Loss
∂θD

end

predicted POD coefficients at subsequent time steps, denoted
(
â∥(t), â⊥(t)

)
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for t > 0. This defines learning pairs
{(

a∥(0), a⊥(0)
)
,
(
a∥(t), a⊥(t)

)
t>0

}
,

with the loss formulated to minimise the discrepancy between predicted and
true coefficients, as described in the next section.

Reconstruction Loss Formulation. The model’s modular architecture sup-
ports multiple loss formulations, enabled by its partially physics-based de-
sign. We begin with the reconstruction loss, which trains the model to re-
produce ground truth trajectories. Three formulations were tested.

First, we used a loss on the POD coefficients, comparing the two-tier POD
encoding of the predicted and reference trajectories. This directly measures
the discrepancy between predicted and true POD coefficients.

Second, we assessed a loss in the full physical space, computed after full
decoding. This more closely reflects the goal of accurate reconstruction in
the original domain.

Third, we tested a physics-informed loss using the H1 norm, which incor-
porates spatial gradients and is natural in finite element contexts.

These losses increase in complexity, potentially improving physical accu-
racy. However, added transformations (particularly on long rollout trajecto-
ries) complicate the loss landscape. A balance is required between physical
fidelity and ease of optimisation. Hyperparameter tuning showed that the
H1-based loss was the most unstable, frequently causing exploding gradi-
ents or convergence to poor local minima. Similarly, losses in full physical
space often led to stagnation, especially for the cylinder flow case, where the
encoder-decoder collapsed to near-zero outputs. Due to consistent training
failures, these settings are excluded from the reported results. Empirically,
we adopt the POD coefficient-based loss for all models. Theoretically, this
choice minimises transformations from target to prediction while remaining
physically interpretable. As POD modes are normalised, dominant modes
yield larger coefficients. Computing the mean squared error (MSE) on these
coefficients naturally emphasises dominant dynamics, aligning with our mod-
elling goals. Section 8.3 further discusses loss normalisation to address vary-
ing trajectory norms in the parametric setting.

The final reconstruction loss is defined as:

Lrecon =
1

Nt

Nt∑
n=1

(
∥â∥(n∆t)− a∥(n∆t)∥2 + ∥â⊥(n∆t)− a⊥(n∆t)∥2

)
(17)

where ∆t is the sampling interval. For clarity, we assume that loss evalu-
ation and simulation share the same time step, although the neural ODE
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framework supports arbitrary sampling intervals.

Deep Supervision Loss. In addition to the reconstruction loss, we introduce
a regularisation term applied to the autoencoder’s latent state:

Lregularisation =
1

Nt

Nt∑
n=1

∥ẑ(n∆t)− z(n∆t)∥2 (18)

This term computes the MSE between the encoded ground-truth snapshots,
z(t), and the corresponding time-integrated latent trajectory, ẑ(t), obtained
from the initial condition.

It serves a dual purpose. First, it ensures the autoencoder and neural
time integrator operate within a shared latent space, preventing the encoder
from overfitting to training initial conditions. Second, it provides deep su-
pervision [47], improving gradient flow to the encoder. Given the model’s
autoregressive nature, gradients become increasingly complex across multi-
ple time steps.

We did not perform an ablation study on this term, as it seems essential
in preventing overfitting to training initial conditions. The full loss combines
both terms, with a hyperparameter λ controlling their relative weights. In
practice, we set λ = 1. The complete training loss is:

Lfull = Lrecon + λLregularisation (19)

Simultaneous training of all neural networks. The model architecture, com-
prising multiple neural network components, allows for flexible training strate-
gies. This versatility enables us to tailor the learning process to distinct
parts of the model. While one could pre-train the encoder and decoder sep-
arately—ensuring accurate encoding of POD-discarded information before
training the time integrator—we chose to train all neural networks jointly
(with the POD basis pre-trained and fixed). This choice was motivated by
potential drawbacks of unregularised autoencoders, which may yield overly
complex latent spaces and hinder learning of the associated dynamics. Joint
training promotes a balanced trade-off between latent space expressivity and
regularity, allowing the time integration network to implicitly regularise the
latent space.

Length of Training Trajectories. The training procedure follows the neural
ODE framework, computing the loss over time-integrated trajectories. This
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enhances stability and accuracy, particularly during autoregressive inference.
However, determining an appropriate rollout length during training remains
an open issue in neural ODE methods [37, 48]. Training on long trajectories
from the outset often results in unstable predictions, especially when the
network is randomly initialised and coupled with a ROM. To address this, we
initially train on truncated trajectories and gradually increase the integration
length. This warm-up strategy reduces divergence risks in the early training
stages.

Neural ODE Implementation. Although the neural ODE framework enables
higher-order time integration than the Euler method, experiments indicate
that the integration scheme has limited impact on accuracy when the time
step is kept consistent. This is likely because the neural network learns to
correct numerical errors introduced by the integration scheme. We therefore
adopt the Euler method for time integration, balancing accuracy and numer-
ical efficiency while simplifying ROM integration via constant time steps.
Neural ODEs often use adjoint equations for backpropagation to achieve
constant memory complexity. However, these methods can be inaccurate
in sensitivity estimation and backwards integration for dissipative systems,
resulting in inaccurate gradients. Techniques such as Adaptive Checkpoint
Adjoint [49] attempt to mitigate these issues, but in our tests, automatic dif-
ferentiation through the Euler computation graph performed the best. While
automatic differentiation may suffer from vanishing or exploding gradients in
deep computation graphs, and memory complexity grows with network size,
our hybrid architecture avoids these drawbacks. With part of the compu-
tation handled by the ROM, the neural network remains compact, reducing
backpropagation cost and complexity. We therefore employ a simple neural
ODE scheme (Euler integration with non-adjoint backpropagation). This
choice balances accuracy, efficiency, and architectural coherence. Although
further tuning of the neural ODE component might yield marginal gains,
such optimisation falls outside the scope of this study, which centres on the
ROM–neural network hybrid.

Scope of the comparison to other models. Intrusive reduced-order models are
highly sensitive to discretisation choices and implementation details. There-
fore all baselines were re-implemented within our framework and tuned with
the same hyper-parameter search (see Appendix A for code, settings, and
training-time statistics). We benchmark our hybrid approach against four
reference models that collectively cover the main ROM families:
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• Fully data-driven model: a neural-ODE model that uses the same
large-scale POD projection, followed by autoencoder compression of all
modes. This isolates the benefit of hybridisation and represents two-
stage approaches such as [26], while remaining implementation-wise as
close as possible to our method.

• POD-Galerkin ROM: the canonical intrusive baseline for linear projec-
tion methods.

• POD truncation error: the theoretical lower bound for any model con-
fined to the retained POD subspace, encompassing closure strategies
such as CD-ROM, VMS-ROM, and LSTM-POD-ROM.

• Large-scale POD-Galerkin ROM (pinball only): all first and second
tier modes are included in the Galerkin projection, as in Section 7.
This represents a best-case scenario for projection–hybrid methods (e.g.
PROM-ANN [28]), yet demonstrates that even with high energy re-
tention and many modes, truncation–projection alone cannot ensure
accurate dynamics.

This controlled four-way comparison clarifies where the proposed hybrid
model adds value relative to purely data-driven, purely projection-based,
and best-case projection-hybrid approaches.

5. Viscous Burgers’ equation results

5.1. Test case description and discussion
We consider the one-dimensional (1D) viscous Burgers’ problem as a test

case, governed by the following partial differential equation (PDE) :

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2 = 0, x ∈ (0, 1), t > 0,

where u is the 1D velocity field and ν a positive constant. This case com-
bines low numerical cost with highly convective and nonlinear behaviour.
We intentionally choose small viscosity ν values to emphasise this regime,
increasing relative convection and promoting the formation of sharp travel-
ling fronts. These features resemble high-Reynolds-number flows [50, 51, 52]
and pose additional challenges for model reduction, beyond convection and
nonlinearity. POD-Galerkin reduced-order models (ROMs) face two main
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difficulties in this context: (i) a linear projection basis cannot efficiently cap-
ture the steep, moving gradients of sharp fronts, requiring an impractically
large number of modes; and (ii) the predominantly nonlinear dynamics re-
main challenging to model, even with many retained modes. This makes the
Burgers’ problem a relevant test case for assessing our model’s capabilities.

Thanks to the reduced computational cost (fewer degrees of freedom and
time steps) we conduct numerous experiments on this case, enabling detailed
performance comparisons and rapid iteration before tackling more complex
scenarios.

We use a first-order finite-element method (FEM) for spatial discretisa-
tion and an Euler scheme for time integration, with the viscosity term treated
implicitly and the convection term explicitly. Simulations are run with FEn-
iCSx [53, 54] on a 128-element unit-length mesh and time step ∆t = 0.005,
with constant viscosity ν = 10−3. Initial conditions are sampled from a
Perlin-noise distribution [55] with unit wavelength and a random number of
harmonics in the range (1, 6), centred at u = 0.4.

5.2. General comparative results

(a) Initial condition (b) Snapshot at 150 timesteps

Figure 3: Visualisation of 3 models performance on a specific example at 3 different time
steps. The compared models are our model with a latent space composition of 5 POD
modes and 15 AE variables, The projection of the ground truth in a 20 mode POD subspace
(acting as a best case scenario for models working only in the POD subspace) and a 20
mode POD Galerkin ROM.

Qualitative comparison with other models. We perform a qualitative com-
parison of our hybrid model against both POD-based and fully data-driven
autoencoder models, as shown in Figures 3 and 4. For clarity, the com-
parison is separated between POD-based and autoencoder-based methods.
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(a) Initial condition (b) Snapshot at 200 timesteps

Figure 4: Visualisation of 2 models performance on a specific example at 3 different time
steps. The compared models are our model with a latent space composition of 5 POD
modes and 15 AE variables, and a fully data driven model with 20 AE variables encoding.

All models use a latent space of 20 modes to better visualise and highlight
discrepancies. Although larger latent spaces typically enhance performance,
the 20-mode setting provides clearer visual distinctions, aiding interpreta-
tion. The trends observed at this size are representative of those seen with
larger latent spaces and will be confirmed in the remainder of the Burgers’
equation results.

In the first comparison, we assess our model against a traditional POD-
Galerkin ROM and the projection of the ground truth onto the 20-mode POD
subspace, serving as a best-case scenario for POD-only methods. Figure 3
illustrates the challenge posed by the Burgers equation for POD approaches,
primarily due to its strong nonlinearity. The traditional ROM fails to capture
the correct dynamics and exhibits severe oscillations, while even the best-case
POD projection cannot resolve the sharp convective fronts and introduces
nonphysical oscillations near the front. Our hybrid model, by combining
the ROM structure with autoencoder-based correction, significantly reduces
these artefacts and better captures the system’s physical behaviour.

In the second comparison (Figure 4), we evaluate our model against a
fully data-driven autoencoder using an encode-neural ODE-decode architec-
ture. Although this model outperforms POD-based methods on the Burgers
equation, it lacks the physical grounding of ROMs. This limitation manifests
in two areas: the initial condition encoding is less accurate, and while the
convective fronts are better represented than in POD models, their propa-
gation speed is inaccurate, sometimes advancing too quickly or too slowly,
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especially at timestep 200. Our method avoids these issues due to the ROM
contribution.

These comparisons are based on our model’s two worst-performing test
examples, complex scenarios that challenge all methods. Nonetheless, our
model demonstrates robust performance, handling even these difficult cases
effectively, further supporting its stability and reliability.

Quantitative Comparison with Other Models. To assess overall model per-
formance, we compare the average test set mean square error (MSE) of our
hybrid model variants with other approaches. The results are summarised in
Table 2.

We evaluate the effect of latent space composition by varying the number
of POD and AE latent variables across 3 hybrid model variants: 20 POD
and 10 AE variables, 10 POD and 20 AE variables, and 5 POD and 25
AE variables. For comparison, we include three additional models: a fully
data-driven autoencoder (AE) with 30 latent variables, a linear hybrid model
with 30 POD modes and no AE variables, and a POD-Galerkin ROM with
30 modes. We also report the projection error of a 30-mode POD, which
serves as an upper bound for ROMs restricted to the POD subspace with
perfect dynamics.

As shown in Table 2, the hybrid model with 20 POD and 10 AE la-
tent variables achieves the lowest test set MSE (8.364 × 10−6), outperform-
ing the fully data-driven model, the linear hybrid model, and the POD-
Galerkin ROM. Remarkably, it also surpasses the 30-mode POD projection
error (7.73× 10−5), indicating that AE latent variables enhance information
density beyond linear modes.

The choice of a 30-mode latent space is motivated by two factors. First,
on the full dataset, the POD projection error becomes visually satisfactory at
this threshold, with only minor non-physical oscillations. Second, 30 modes
represent the performance threshold for ROMs trained on a single trajec-
tory. This provides a practical benchmark: matching single-trajectory ROM
performance while accommodating the greater variability of the full dataset.

These results highlight the relevance of optimal latent space composition,
as performance varies across hybrid configurations. This notion is further
explored in Section 5.3.
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Model Test-set MSE
Hybrid model 20 POD + 10 AE modes 8.364× 10−6

Hybrid model 10 POD + 20 AE modes 1.302× 10−5

Hybrid model 5 POD + 25 AE modes 2.154× 10−5

Linear encoding hybrid model, 30 POD + 0 AE modes 8.265× 10−5

Fully data-driven model 30 modes 7.655× 10−5

POD-Galerkin ROM 30 modes 1.600× 10−3

30 modes POD projection error
(best case scenario for POD-based models) 7.73× 10−5

Table 2: Test set mean square error (MSE) for hybrid models and comparative models
with 30 total modes in the latent space.

(a) Hybrid model :
20 POD + 20 AE modes

(b) Hybrid model :
10 POD + 15 AE modes

(c) Hybrid model :
5 POD + 15 AE modes

Figure 5: Visualisation of prediction of the test set 0.5s (100 time-steps) of simulation.
Chosen models are the best tested models for 3 size of retained POD modes. The visu-
alisation is divided into 3 lines, the first shows prediction in the full physical space, the
middle line shows prediction in the subspace orthogonal to the retained subspace, and the
last line shows prediction in the POD subspace. Blue curves show models’ predictions and
red curves show ground truth simulation.
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5.3. Model analysis on the Burgers’ equation test case
Analysis of model’s output in each subspace. Figure 5 illustrates the model’s
predictive capabilities across various test set examples. Predictions and
ground truth are decomposed into subspaces: the bottom shows the filtered
solution in the POD subspace, the middle filters to the AE subspace, and the
top combines both to reconstruct the full space solution. We highlight three
key findings. First, the qualitative results show near-perfect reconstruction
in all three subspaces, indicating our model achieves high accuracy. Second,
the trajectory norm within the unretained subspace is notably large, partic-
ularly for models with 5 and 10 POD modes, underscoring the relevance of
our AE approach. Finally, the visualisation reveals that the small remaining
error lies primarily in the subspace orthogonal to the POD, which is desir-
able, as this component corresponds to the physically unexplained part of
the model.

Figure 6: Plot of the time dynamics in the hybrid latent space for 3 examples of the test
set. The left column depicts the time dynamics for each model’s last POD mode. The
blue curve represents our model’s predicted dynamics, and the orange curve represents
the ground truth. The two right columns show the dynamics for the first 2 AE modes.
The blue curve shows the dynamics given by the time integrator neural network, and the
orange curve depicts the encoded representation of the ground truth dynamics.
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Latent space dynamics. Figure 6 illustrates the latent space dynamics for
three test set examples using our best models with 20, 10, and 5 POD modes.
The POD subspace (left column) shows near-perfect reconstruction of POD
coefficients across all models, confirming that the main sources of error lie
within the less interpretable AE subspace. Notably, the dynamics in the
AE subspace (two right columns) are unusually smooth for an autoencoder.
The joint training of the AE and time integrator appears to regularise the
autoencoder mapping. In addition, the AE mode dynamics exhibit tem-
poral patterns resembling those of the final retained POD modes, both in
amplitude and frequency content. This POD-like behaviour, which emerges
without explicit regularisation, is particularly noteworthy. Finally, the AE
mode plots display two curves: one predicted by the time integrator, and one
representing the encoded ground truth trajectory. Even in the least accurate
examples, the smoothness and consistency between these neural representa-
tions remain acceptable.

Optimal latent space composition. We analyse the impact of latent space
composition in Figure 7, beginning with the investigation of optimal ratios
for latent space construction. Each curve corresponds to a model with a
fixed number of POD modes: 0, 5, 10, and 20. Increasing the number of
AE modes beyond 10–15 yields diminishing performance gains, while adding
POD modes consistently improves accuracy. Adopting a complementary view
in Figure 8, we fix the total latent space size to compare the reduction capa-
bilities of different models. The comparison includes 18 variants of our hybrid
models, fully data-driven models, classical POD ROMs, and the POD pro-
jection error, which serves as an upper bound for methods constrained to the
POD subspace.

Classical ROMs perform poorly, likely due to the problem’s strongly con-
vective and nonlinear character, and because the POD basis is built from a
high-variance dataset. When trained on a single example, the same ROM
performs better but fails to generalise effectively across broader datasets. The
results show that hybrid models achieve the best performance for moderately
large latent spaces (15 to 50 modes). In contrast, fully data-driven methods
are more effective when the latent space is small (10 modes or fewer), possibly
due to the higher information density provided by autoencoders.

Computational cost. The proposed method clearly outperforms traditional
POD-Galerkin ROMs in accuracy at equivalent computational cost. Specifi-
cally, it achieves over two orders of magnitude lower MSE (MSE = 8.4×10−6)
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Figure 7: Graph showing models’ perfor-
mance based on the number of autoencoder
modes.

Figure 8: Graph showing all models’ perfor-
mance based on the total size of their re-
duced space.

compared to a 35-mode POD-Galerkin ROM (MSE = 1.5×10−3). The com-
putational cost of our model is 1.23× 108 floating point operations (FLOPs)
per trajectory integration (300 time steps), closely matching the 1.25 × 108

FLOPs of the 35-mode ROM. Beyond 35 modes, ROM performance on the
test set stagnates, showing that increasing the cost of a traditional POD-
Galerkin ROM cannot match our model’s accuracy. This confirms that our
hybrid method offers significantly higher accuracy with no additional com-
putational overhead. Although no speed-up over the FOM is observed in
this numerically simple test case, the next case (cylinder flow) is expected to
highlight this advantage. Training time and the hyperparameter tuning used
to obtain the reported performance are detailed in Appendix A, supporting
the method’s relevance for multi-query scenarios, where its high accuracy
and efficiency justify the training cost.

6. Single trajectory cylinder flow test case and results

6.1. Test case description
For our initial 2D experiment, we study the Navier-Stokes equations

(equation 20) by simulating cylinder flow at Reynolds number 100.
∂u

∂t
+ (u · ∇)u− ν∆u+∇p = f

∇ · u = 0

(20)
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This test case is a classical fluid dynamics benchmark [56], known for its
vortex shedding and moderate complexity. At Reynolds number Re = 48, the
flow undergoes a Hopf bifurcation, transitioning from a steady base flow to a
periodic limit cycle—the Von Kármán vortex street—characterised by alter-
nating vortex shedding. The base flow instability and the well-documented
periodic behaviour of the limit cycle make this case well-suited for evaluat-
ing reduced-order models (ROMs), which must capture both the instability
growth rate and vortex shedding frequency.

To represent the flow’s essential dynamics, we restrict the latent space
to three POD modes: one shift mode for the mean flow and two oscillatory
modes capturing the shedding dynamics [57, 58]. These modes are stan-
dard in ROM studies for their balance between compactness and physical
interpretability. Simulations are performed using FreeFEM++ [59], with a
mixed-element method employing P1-bubble velocity elements and first-order
pressure elements. This discretisation yields 27,000 degrees of freedom (see
Figure 9). A first-order time-stepping scheme is used, with ∆t = 0.04 s and
4000 time steps, covering the transition from base flow to several limit cycle
periods.

Figure 9: Mesh for cylinder flow test case

6.2. Single trajectory cylinder flow results
Qualitative results. Our analysis of the model’s qualitative performance fo-
cuses on two aspects: prediction accuracy within the latent space of retained
POD modes, and reconstruction of dynamics from the discarded information
encoded by the autoencoder modes.
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Figure 10: time evolution of the 3 retained POD modes coefficients when comparing our
hybrid strategy to a 3 mode POD Galerkin ROM and the ground truth data.

Figure 10 shows the latent space dynamics of the three retained POD
modes, comparing our hybrid model (3 POD + 27 AE modes) with the
full-order model (ground truth) and a 3-mode POD Galerkin ROM. This
visualisation highlights the model’s ability to capture key dynamical features,
including limit cycle amplitude, frequency, and instability growth rate. The
results demonstrate that the hybrid model clearly outperforms the traditional
POD Galerkin ROM. Although the latter correctly predicts the limit cycle
frequency, it fails to capture the transient dynamics leading to the limit cycle
and inaccurately represents both amplitude and growth rate. In contrast, the
hybrid model accurately reproduces the large-scale dynamics: the inclusion
of AE information and closure modelling allows it to precisely match the
instability growth rate from the base flow, as well as the amplitude, frequency,
and phase of the limit cycle.

To evaluate the model’s performance beyond large-scale dynamics, we
examined information outside the POD subspace. Figure 11 highlights the
significant content in this subspace, supporting our use of an autoencoder.
The figure compares the ground truth with the model output at a point on
the limit cycle, filtered to retain only the unrepresented POD subspace. The
shape and magnitude of small-scale structures are accurately reconstructed.
As this snapshot occurs after the solution has reached the limit cycle, the
results show that the model not only predicts the correct AE dynamics but
also reconstructs them with precision. This dual capability in prediction
and reconstruction demonstrates the effectiveness of our hybrid approach in
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Figure 11: Visualisation of the model’s accuracy decomposed in POD and autoencoder
subspace for a snapshot on the limit cycle.

capturing the full complexity of the cylinder flow at Re = 100.

Figure 12: Visualisation of the model’s accuracy along two cuts of the domain and decom-
posed in full, POD and Autoencoder subspace for a snapshot on the limit cycle.

Quantitative results. To assess the quantitative performance of our model,
we focus on two aspects: the prediction of horizontal velocity along selected
domain cross-sections and the overall MSE comparison across models for the
full trajectory. Figure 12 shows the two cross-sections used for velocity anal-
ysis: a horizontal cross-section across the domain width at mid-height, and
a vertical cross-section just downstream of the cylinder. The plots below
display horizontal velocity predictions along these sections after 4000 simula-
tion steps, when the flow has reached its limit cycle. The results support our
qualitative observations. Within the POD subspace, our model’s predictions
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Model test-set MSE
Hybrid model

3 POD + 27 AE modes 1.5× 10−5

POD-Galerkin ROM
3 modes 2.64× 10−2

POD-Galerkin ROM
30 modes 1.68× 10−4

3 modes POD
projection error 1.51× 10−3

Table 3: Mean square error (MSE) on
the complete time integration of the
cylinder flow at Re = 100 for hybrid

models and comparative models with 30
modes total latent size.

Figure 13: Comparison of the hybrid
model performance and ROM

performance with respect to the size of
the retained subspace

are nearly indistinguishable from the ground truth. In the orthogonal com-
plement, we observe excellent agreement along the horizontal cut and slightly
less accurate but still strong predictions for the vertical cut. Overall, flow
structure values in the orthogonal subspace are well captured, with only mi-
nor discrepancies near the boundaries. These results confirm that our model
accurately reproduces flow structures and achieves quantitative performance
close to the ground truth. Table 3 reports the MSE averaged over all time
steps for various models, offering a broader view of performance. Our hybrid
model significantly outperforms both the 30-mode POD-Galerkin ROM and
the projection error of a 3-mode POD. This means it also surpasses models
that correct only within the POD subspace, such as the LSTM ROMs and
CD-ROM discussed in Section 2.1. To better understand performance trends
and identify the optimal number of AE modes, we also plot the MSE as a
function of latent space size in Figure 13. Our model consistently outperforms
all similarly sized ROMs. For latent spaces smaller than 20, it even outper-
forms the POD projection error, thereby exceeding all models constrained
to the POD subspace. This is particularly notable since the cylinder flow
trajectory is well suited to POD—unlike the Burgers case—yet our model
still delivers superior results.

Assessment of model stability and robustness to unseen initial conditions.
The previous sections have demonstrated the accuracy of our method. To
further evaluate its performance, we assess the model’s stability and robust-
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Figure 14: Left : Dynamics of the 3 retained POD coefficients for an inference trajectory
100 times longer than the training trajectory.
Right : Oscillatory POD modes phase plot of the same trajectory

ness during inference. While the linear component of our model ensures a
physical foundation, the deep learning part does not guarantee reliable re-
sponses to unseen data. We therefore test its behaviour in unfamiliar regimes
through three test-time experiments on the cylinder flow case. First, we ex-
amine whether the model maintains accuracy over horizons far beyond the
training trajectory. As shown in Figure 14, when testing on a trajectory
100 times the training duration, the hybrid solution remains on the limit
cycle without diverging. This indicates the model can generate consistent
long-horizon predictions, motivating a deeper analysis of its local stability.

To further assess stability, we perturb the system at a point on the limit
cycle, considering two regimes: small perturbations to evaluate the linear
response and trajectory-tracking ability, and larger perturbations to test re-
covery under nonlinear effects. The procedure is identical for both, differing
only in perturbation magnitude. Starting from the base flow, the system is
integrated until it reaches the limit cycle, continuing for three-quarters of the
training trajectory. At this point, Gaussian noise is added to the latent rep-
resentation: N (µ = 0, σ = 0.1) for small perturbations and N (µ = 0, σ = 2)
for large ones. The standard deviation is uniform across all latent space
dimensions. For each regime, we generate 128 perturbed trajectories. Fig-
ures 15 and 17 show the system’s response to small and large perturbations,
respectively. In both cases, all trajectories return to the limit cycle within
a reasonable time frame. This is evident in the time series envelopes of the
three retained POD modes and the phase plots, where all red-coloured tra-
jectories eventually align with the limit cycle, indicating stable long-term
behaviour.
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Figure 15: Top: Time evolution of the first three POD mode coefficients for 128 small
amplitude perturbations.
Bottom: Phase plots of the same trajectories. Left: Mode 1 (Y) vs. Mode 2 (X). Right:
Mode 2 (X) vs. Mode 3 (Y). Jet colormap indicates transient evolution (blue → green)
and approach to the limit cycle (green → red).

Figure 16: Left: Small amplitude perturbation decay per latent dimension.
Right : Hilbert transform post-processed frequency for small amplitude perturbations
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To quantify the system’s response, we compared the perturbed and un-
perturbed dynamics of each POD mode using the average L2 norm of their
differences. The results in Figure 16 (left) and Figure 18 (left) show that
most modes exhibit exponential decay. However, the second and third POD
modes—representing the primary oscillatory components—initially diverge
and then plateau at a constant error. Since all trajectories eventually return
to the limit cycle, this behaviour suggests a transient frequency mismatch
rather than amplitude divergence.

Figure 17: Top: Time evolution of the first three POD mode coefficients for 128 large
amplitude perturbations.
Bottom: Phase plots of the same trajectories. Left: Mode 1 (Y) vs. Mode 2 (X). Right:
Mode 2 (X) vs. Mode 3 (Y). Jet colormap indicates transient evolution (blue → green)
and approach to the limit cycle (green → red).

To verify this hypothesis, we applied a Hilbert transform to the second
and third POD modes to extract their instantaneous frequencies. Figure 16
(right) and Figure 18 (right) display the frequency evolution for small and
large perturbations, respectively. In both cases, the perturbed trajectories
(blue) exhibit an initial transient frequency shift relative to the unperturbed
reference (red). For small perturbations, the maximum frequency difference
reaches 0.8%; for large perturbations, it increases to 16%. However, this shift
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is transient, and as the dynamics return to the limit cycle, the frequencies
stabilise at their correct values. This behaviour is expected, as the system
no longer lies exactly on the limit cycle immediately after a perturbation.
For the cylinder flow the vortex shedding frequency depends slightly on the
flow state, with frequencies near the base flow differing from those on the
limit cycle. Thus, perturbations temporarily modify the system’s oscillatory
dynamics until it re-stabilises at the limit cycle. This indicates that the
model captures physically plausible dynamics and has learnt that frequency
varies with the system’s distance from the limit cycle.

Figure 18: Left: Large amplitude perturbation decay per latent dimension.
Right : Correlation plot of Hilbert transform instantaneous frequency with corresponding
shift mode value

Finally, we evaluate the model’s robustness to perturbed initial con-
ditions, focusing on the transient regime where perturbations may grow
at different rates compared to those applied directly on the limit cycle.
This experiment also assesses the encoder’s sensitivity to noise, with noise
added after POD encoding, thereby impacting both dynamics prediction
and the encoding–decoding process. Two noise magnitudes are considered:
N (µ = 0, σ = 0.01) and N (µ = 0, σ = 5) and applied on the large 2 tier
POD coefficients and not the full physical space to prevent unwanted fil-
tering by the POD. For small perturbations (Figure 19), the predicted flow
closely follows the reference trajectory, indicating that minor disruptions do
not impair accuracy. For larger deviations, which exceed the training regime
by over an order of magnitude (Figure 20), the hybrid model still produces
physically consistent transients and converges to the correct limit cycle in
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reasonble time. This is especially notable given the training on a unique
trajectory which would normally promote overfitting.

Figure 19: Top: Time evolution of the first three POD mode coefficients for 128 trajectories
under unseen initial conditions, color-coded by mode (Mode 1: blue, Mode 2: red, Mode
3: black).
Bottom: Phase plots of the same trajectories. Left: Mode 1 (Y) vs. Mode 2 (X). Right:
Mode 2 (X) vs. Mode 3 (Y). Jet colormap indicates transient evolution (blue → green)
and approach to the limit cycle (green → red).

Computational cost. To evaluate the computational efficiency of our hybrid
POD/deep learning model, we compare it with both the FOM and a tradi-
tional POD-Galerkin ROM, focusing on two objectives: achieving significant
speed-up over the FOM and achieving lower computational cost than an
equivalent-performance ROM. Both are assessed using two metrics: compu-
tational time and floating-point operations (FLOPs), the latter providing a
hardware-independent measure of effort. For the first objective, our model
reduced compute time from 163s (FOM on Xeon(R) Gold 5118 CPU) to
11s (hybrid model on Tesla V100S GPU), and operations from 1.5× 1012 to
2.3×109, achieving a speed-up of 15 to 500 times. This supports the model’s
scalability for more complex cases, as hypothesised in the Burgers equation
results. For the second objective, we compare with the smallest ROM achiev-
ing comparable (though slightly higher) error. The cylinder flow test case,
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Figure 20: Top: Time evolution of the first three POD mode coefficients for 128 trajectories
under unseen initial conditions, color-coded by mode (Mode 1: blue, Mode 2: red, Mode
3: black).
Bottom: Phase plots of the same trajectories. Left: Mode 1 (Y) vs. Mode 2 (X). Right:
Mode 2 (X) vs. Mode 3 (Y). Jet colormap indicates transient evolution (blue → green)
and approach to the limit cycle (green → red).
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characterised by smooth periodic dynamics, is well suited to POD-Galerkin
ROMs; thus, any speed-up in this setting is noteworthy. Our hybrid model
yields a modest advantage, with fewer operations (2.3 × 109 vs 3.2 × 109),
corresponding to a 1.5x speed-up. Additionally, earlier results on the Burgers
equation showed a widening performance gap in scenarios less favourable to
standard POD-Galerkin ROMs. These findings align with theoretical expec-
tations. Our model combines two computational components: the ROM and
a neural network. The ROM scales cubically (O(n3)) with the number of
POD modes, while the neural network scales linearly (O(n)) with the num-
ber of autoencoder modes. By reducing the number of required POD modes
via autoencoder modes, our hybrid model shifts the computational burden
from cubic to linear scaling. This becomes increasingly beneficial as problem
complexity and mode count rise, where traditional ROMs are hindered by
cubic cost. Full details on training time and hyperparameter tuning are given
in Appendix A. Moreover, as shown in the previous subsection, the model’s
performance outside the training regime can be weighed against training cost,
showing particular value in multi-query scenarios.

7. Fluidic pinball in the quasi-periodic regime

7.1. Test case description
We now consider a second 2D test case, the fluidic pinball, chosen to high-

light a different aspect of the proposed model. While sharing several features
with the cylinder flow test case, it exhibits substantially higher sensitivity to
parameters and modelling errors. The configuration consists of three iden-
tical cylinders of equal diameter, positioned at the vertices of an equilateral
triangle in close proximity, as shown in Figure 21. This arrangement gen-
erates strong wake interactions and various flow regimes as the Reynolds
number changes.

For Re ≈ 15 to Re ≈ 120, the fluidic pinball passes through four distinct
dynamical regimes, each marked by qualitative changes in wake structure and
stability [60]. This study focuses on the regime for Re ∈ [100, 115], where
the flow is quasiperiodic, featuring two incommensurate shedding frequencies
that form a torus-like attractor in phase space. For Re > 115, the system
transitions to chaotic dynamics.

Capturing the dynamics in this quasiperiodic regime is challenging partly
due to the small parameter range. Even small modelling errors—particularly
from intrusive, truncated Galerkin models—can destabilise the solution and
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prematurely drive the dynamics into chaos. Although the modal energy
spectrum decays relatively fast, allowing a low-dimensional POD space to
represent the state field, this alone does not ensure accurate temporal dy-
namics. As shown later, projection based reduced models fail to remain on
the correct quasiperiodic attractor and predict the wrong regime.

Simulations are performed with FreeFem++ [59]. The mesh uses P1-
bubble velocity elements and first-order pressure elements, with approxi-
mately 200,000 degrees of freedom due to the complex geometry. Time inte-
gration employs a second-order multi-step scheme with ∆t = 0.001, viscosity
ν = 10, and inlet velocity u = 11. We simulate 35,000 time steps on the at-
tractor to capture multiple quasiperiodic periods. Snapshots are saved every
50 time steps, yielding 700 training snapshots. The test dataset spans 25,000
time steps at the same saving rate, producing 500 test snapshots.

Figure 21: Mesh for the fluidic pinball test case, featuring three cylinders in an equilateral
triangle configuration.

7.2. Qualitative Results for the Fluidic Pinball
The objective of this test case is to demonstrate our model’s capacity

to address the limitations of projection based reduced-order models (ROMs)
affected by truncation effects. In models relying solely on the physics of
large yet truncated Galerkin subspaces, errors can destabilise the dynamics,
producing inaccurate or even chaotic predictions.

For this case, our hybrid model uses a two-tier POD decomposition with
100 total POD modes. The first tier comprises the 10 most energetic modes,
integrated linearly. The remaining 90 modes are compressed into a 10-
dimensional latent space via an autoencoder. The resulting 20-dimensional
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latent space thus combines large-scale dynamics (first 10 dimensions) with
nonlinear corrections from the compressed subspace (second 10 dimensions).

We compare our hybrid method to two baselines:

• A 100-mode POD-Galerkin ROM retaining 99.995% of the total energy.
Although this truncation level exceeds that typically used in ROM
studies, it remains insufficient to capture the quasiperiodic dynamics
accurately.

• A fully data-driven model consisting of a 100-mode POD projection,
followed by an encoder - Neural ODE time integrator - decoder archi-
tecture with a 20 variable latent space.

Figure 22 shows the time evolution of the first five POD mode coeffi-
cients for the test trajectory, illustrating each model’s ability to reproduce
the dynamics. Additionally, Figure 23 compares the predicted lift (CL) and
drag (CD) coefficients, reconstructed from the 100-dimensional POD basis,
providing a global measure of the flow dynamics and pressure reconstruction.

The results show that the POD-Galerkin ROM fails to capture the dy-
namics despite the high energy content of its basis. Its predictions diverge
rapidly from the ground truth, losing the quasiperiodic structure and instead
exhibiting behaviour akin to a transition to chaos—likely due to incorrect
modelling of nonlinear interactions with discarded modes. In contrast, the
fully data-driven model yields a coherent quasiperiodic signal, albeit with
slight amplitude discrepancies. Our hybrid model avoids these issues and
qualitatively reproduces the true dynamics, both in POD mode evolution
and in global force coefficients. These results highlight the need for nonlin-
ear modelling and demonstrate the effectiveness of combining a physics-based
ROM structure with a data-driven autoencoder correction, particularly for
complex flows where truncation effects are significant.

7.3. Quantitative Results for the Fluidic Pinball
To complement the previous section’s observations, we assess the models

quantitatively using the mean relative error on the test trajectory:

ε =
1

N

N∑
k=1

∥a(k)
true − a

(k)
pred∥2

∥a(k)
true∥2

where N is the number of snapshots, and a(k) is the reduced-order state at
time step k.
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Figure 22: Time evolution of the 5 leading POD modes for four models: the full-order
model (black, ground truth), our hybrid model (red dashed line), the 100-dimensional
POD-Galerkin ROM, and a fully data-driven model with the same latent space size as our
hybrid model.

Figure 23: Time evolution of the lift (CL) and drag (CD) coefficients for four models:
the full-order model (black, ground truth), our hybrid model (red dashed line), the 100-
dimensional POD-Galerkin ROM, and the fully data-driven model with the same latent
space size as our hybrid model.
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Table 4 lists the mean relative error for the three models considered. The
subspace size corresponds to the dimension of the latent space or Galerkin
basis. The results corroborate the qualitative trends: our hybrid model is
about 3.4 times more accurate than the fully data-driven NODE model and
over 45 times more accurate than the POD-Galerkin ROM. This highlights
the benefit of combining a physics-based subspace with a nonlinear data-
driven correction to preserve both accuracy and stability.

Model Subspace Size Mean Relative Error
Hybrid (10 POD + 10 AE) 20 1.69× 10−2

Data-driven (20 AE) 20 5.79× 10−2

POD-Galerkin ROM 100 7.67× 10−1

Table 4: Quantitative comparison of the models on the quasi-periodic fluidic pinball test
set.

8. Parametric cylinder flow test case

8.1. Parametric Problem Description
The first part of our study addressed fixed parameters, limiting the model’s

generalisability. Extending to parametric problems introduces additional
challenges but enhances real-world applicability, as variations in parame-
ters—such as the Reynolds number—can cause significant, nonlinear changes
in flow dynamics. Parametric modelling is particularly relevant for applica-
tions such as shape optimisation [61], data assimilation [62], and surro-
gate modelling for engineering design exploration [63]. Capturing system
behaviour across a range of parameters is essential for predictive reliability.

We consider a family of nonlinear PDEs with parameter-dependent dy-
namics, expressed in semi-discrete weak form as:

Mdtw = L(ν)w + B(w,w), (21)

where M is the mass matrix and w the high-dimensional state vector, sat-
isfying homogeneous boundary conditions. The dynamics are governed by a
linear operator L(ν) and a bilinear nonlinear operator B.

Although the parameter dependence lies in the linear term L(ν), its varia-
tion with respect to the parameter is nonlinear. This relation affects most the
learnt dynamics correction and its effects are detailed in Appendix B, where
we present numerical evidence that the reduced model exhibits a nontrivial,
nonlinear dependence on ν.
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8.2. Reduced-order modeling for the parametric problem
We adopt the perturbative formulation introduced above to handle pa-

rameters (e.g., Reynolds). For each parameter value ν, the base flow w0(ν)
solves the steady Navier–Stokes problem and varies nonlinearly with ν. The
perturbation w′ then satisfies

Mdtw
′ = L′(ν)w′ + B(w′,w′)

with L′(ν)w′ = L(ν)w′ + B(w0(ν),w
′) + B(w′,w0(ν))

(22)

Even if L(ν) is affine in ν, the dependence of L′(ν) is generally non-affine
because w0(ν) depends nonlinearly on ν.

For training, we assemble a parametric dataset of perturbation trajecto-
ries {w′(t, νm)}m at multiple νm, and a test set at previously unseen parame-
ters. A single global POD basis Φr is computed from the concatenated train-
ing snapshots to capture dominant structures across all νm, trading some
reconstruction accuracy for cross-parameter generality; consequently, more
modes may be required to satisfy a given energy threshold.

During training and testing, the parameter-dependent operator is pro-
jected onto the reduced subspace:

L′(νm) = Φ⊤
r L′(νm) Φr (23)

with Φr the truncated POD basis of rank r. The reduced perturbation dy-
namics read

dtai = ROM(ai, νm) =
r−1∑
j=0

L′
ij(νm) aj +

r−1∑
j,k=0

Nijk ajak (24)

where ai are the POD coefficients and Nijk = φ⊤
i B(φj,φk) are the (parameter-

independent) quadratic interaction coefficients. Although (24) formally en-
codes parameter effects via L′(ν), the non-affine dependence induced by
w0(ν) implies that the learned correction in our hybrid model must also
capture nonlinearity in ν, the importance of this consideration on our test
case is investigated in Appendix B.

Alternative parametric-ROM strategies include local bases and interpola-
tion of reduced operators [64, 65]. We favor a single global basis for simplicity,
preserved orthogonality, and seamless integration with our hybrid approach,
wherein deep learning corrects the limitations of the projected model under
this non-affine parametric dependence.
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Figure 24: Model architecture diagram for the parametric variant of the model, ν represent
the parameter and is used as input in all neural networks of the model and the reduced
order model.

8.3. Model description for the parametric variant of the model
Encoder. The parametric extension of our model builds on the previously de-
scribed architecture, with adjustments to incorporate parameter dependence.
We denote the parameter as ν, scaled to match the range of the second-tier
POD coefficients for learning stability. The encoder now takes ν as an ad-
ditional input, following the conditional autoencoder approach of [66]. This
enables the nonlinear encoding–decoding to vary across parameter values ν,
improving the model’s capacity to capture parameter-dependent states. The
encoding process is given by:

a∥(t) = Φ⊤
∥ Mw′(t),

z(t) = Encoder(a⊥(t), ν, θE), a⊥(t) = Φ⊤
⊥Mw′(t),

(25)

The full latent space is formed by concatenating the first-tier POD coeffi-
cients a∥, the encoder output z, and the parameter ν. This design preserves
interpretability and makes efficient use of the limited latent space, direct-
ing the encoder to represent only the unretained information rather than
redundantly encoding the parameter.

Time Integration. Time integration in the hybrid model follows the non-
parametric case, with one key change: the reduced linear operator becomes
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parameter-dependent, obtained by projecting the full operator at each pa-
rameter value. This embeds parametric effects within the POD framework.
The neural network takes the full latent state, including the parameter, as
input and outputs the time derivatives of both POD and AE modes and
parameter value is kept. The complete time integration system is:

dtâ∥(t) = ROM(â∥(t), ν) + NN∥(â∥(t), ẑ(t), ν, θNN)

dtẑ(t) = NN⊥(â∥(t), ẑ(t), ν, θNN)

dtν = 0

(26)

Decoder. The decoding process retains the non-parametric structure for the
POD part. The neural network decoder, however, now includes ν as an ad-
ditional input, following standard practice in conditional autoencoders [67]:

ŵ(t) = Φ∥â∥(t) + Φ⊥â⊥(t), â⊥(t) = Decoder(ẑ(t), ν, θD) (27)

Normalisation of the loss for better model training. Model training follows
the same procedure as in the non-parametric test case, except for the loss
formulation. The overall structure is retained, but the reconstruction term
is modified to address a scaling issue introduced by parametric test cases.
Low Reynolds number flows generally have smaller coefficient values than
high Reynolds number flows, leading to lower absolute norms of trajectories.
Without scaling, loss minimisation yields disproportionately high relative er-
rors for low Reynolds number flows and very small proportional errors for
high Reynolds number flows. A similar effect occurs at the start of trajecto-
ries, near the base flow, where amplitudes are small and high relative errors
correspond to small absolute errors. To mitigate this, we introduce a scaling
factor in the loss formulation. Scaling is applied with respect to the param-
eter value and time, but not across the coefficient dimension, as we aim to
preserve both relative and absolute accuracy for the most energetic modes.

The scaling factor is defined as:

γ(t) =
√
∥a∥(t)∥2 + ∥a⊥(t)∥2 + ϵ (28)

where a denotes the POD coefficients of the current learning batch, arranged
as a three-dimensional tensor: the first dimension is the example index, the
second the degrees of freedom, and the third the time step, ∥ · ∥ denotes the
L2 norm of the POD coefficients for each example over its timesteps, and ϵ
is a small constant (e.g., 10−9) for numerical stability.
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With this scaling, the reconstruction term becomes:

Lrecon =
1

Nt

Nt∑
n=1

∥∥â∥(tn)− a∥(tn)
∥∥2

+ ∥â⊥(tn)− a⊥(tn)∥2

[γ(tn)]2
(29)

This scaled formulation balances performance across Reynolds numbers and
along the trajectory, ensuring consistent relative accuracy while maintaining
focus on the most energetic modes.

8.4. Parametric cylinder flow test case
Our final 2D experiment extends the previous test case by introducing

parametric variation to the cylinder flow problem. We examine flow dynam-
ics for Reynolds numbers between 60 and 120, based on the Navier–Stokes
equations (20) and using the same geometry as in the Re = 100 case. To bet-
ter reflect real-world conditions, the Reynolds number is varied by adjusting
the input velocity, mirroring practical situations where changes in flow usu-
ally result from varying speeds. The dataset comprises 31 simulations with
Reynolds numbers defined as Re(m) = 60 + 2m, where m is an integer and
0 ≤ m ≤ 30. For testing, we use a separate set with Re(m) = 50 + 5m and
m ∈ {0, 1, 3, 5, 7, 9, 11, 13, 15}. This choice enables assessment of the model’s
ability to interpolate between known parameters and extrapolate beyond the
training range.

8.5. Parametric cylinder flow results
Qualitative results. Building on the previous single-Reynolds-number results,
we demonstrate that, when trained on a dataset of cylinder flows at multi-
ple Reynolds numbers, the model can predict trajectories both within and
slightly outside the training range.

To assess accuracy across Reynolds numbers, we selected the second POD
mode and applied a Hilbert transform to the predicted coefficients over time.
This transform quantifies the instability growth rate towards the limit cycle
and the oscillatory frequency. Three representative test examples are shown
in Figure 25. In each example, the first row displays the dynamics of the
second POD coefficient alongside the model prediction. The second row
compares the frequency extracted via the Hilbert transform for ground truth
and predicted data. While the Hilbert transform captures the growth rate
and frequency of the periodic instability, artefacts occur at signal boundaries
(Figure 25) and should be disregarded.
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The 3 selected test examples are : the two most extreme Reynolds num-
bers, Re = 50 and Re = 125, both outside but near the training interval,
and Re = 105, which closely matches the single-trajectory case discussed
earlier. The model performs almost perfectly for Re = 105 and Re = 125
in terms of instability growth rate, phase, amplitude, and frequency. This
performance is consistent across most Reynolds numbers, except for Re = 50
and Re = 55. In all cases, phase and frequency predictions are highly ac-
curate, and the limit cycle envelope is generally well reconstructed, though
minor growth rate errors remain.

Experiments suggest that inaccuracies at lower Reynolds numbers stem
from the loss function formulation. For these cases, POD mode coefficients
have smaller magnitudes, and since the MSE is computed on absolute error,
such trajectories are underweighted during training. The same effect occurs
for initial time steps, where POD mode norms are low. Furthermore, trajec-
tories near the critical point show a nonlinearly slow instability growth rate,
making accurate prediction of this growth particularly challenging, which
explains the observed discrepancies.

We also visualised the predicted trajectories in the physical space for
both the POD and AE subspaces. Results closely match those for the 2nd
POD coefficient. For Reynolds numbers in the range Re = 60 to Re = 125,
the agreement is near perfect, as shown in Figure 26. This is evident in
both the visualisations and the plots along cuts, for both the POD and
autoencoder subspaces. These results are highly encouraging, indicating that
the parametric variant of the model performs qualitatively as well as the non-
parametric version, but here across a broader range of Reynolds numbers.

Quantitative results. The quantitative analysis of the model is consistent
with the qualitative findings. Figure 27 shows the normalised MSE, ob-
tained by dividing each example’s predicted time step by the norm of the
corresponding ground truth time step. Aside from the cases at Re = 50
and Re = 55, the loss on all unseen Reynolds numbers remains relatively
stable, even for higher values such as Re = 125 outside the interpolation
range. This stability demonstrates the model’s robustness. In contrast, the
noticeably higher relative MSE at Re = 50 and Re = 55 mirrors the qual-
itative differences observed in these flows. This trend is also evident in the
aggregate performance in Table 5, where our hybrid model outperforms both
3-mode and 30-mode POD-Galerkin ROMs.

This discrepancy stems from three factors. First, these cases lie outside
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(a) Second mode dynamics and Hilbert transform frequency and envelope post-treatment for extrapolate
test set Reynolds = 50

(b) Second mode dynamics and Hilbert transform frequency and envelope post-treatment for interpolated
test set Reynolds = 105

(c) Second mode dynamics and Hilbert transform frequency and envelope post-treatment for extrapolated
test set Reynolds = 125

Figure 25: Second mode dynamics and Hilbert transform frequency + envelope post-
treatment for various Reynolds numbers.
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(a) Visualisation of POD and AE subspaces in physical space for test example at Reynolds 55 for final
timestep

(b) Visualisation of POD and AE subspaces in physical space for test example at Reynolds 105 on the
limit cycle

(c) Visualisation of POD and AE subspaces in physical space for test example at Reynolds 125 on the
limit cycle

Figure 26: visualisation of POD and AE subspaces for ground truth and predicted snap-
shots, the top line represents ground truth, the bottom line represents the model predic-
tion, the left column represents POD subspace and the right column represents the AE
subspace.
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Model test-set MSE
Hybrid model

3 POD + 27 AE modes 1.13× 10−4

POD-Galerkin ROM
3 modes 1.42× 10−2

POD-Galerkin ROM
30 modes 6.53× 10−3

3 modes POD
projection error 1.16× 10−3

Table 5: Mean square error (MSE) on
the complete time integration of the

cylinder flow averaged for all reynolds
for hybrid models and comparative

models with 30 modes total latent size.

Figure 27: Plot of the relative MSE of
the model for different Reynolds number
test examples

the interpolation range and in a distinct dynamical regime, making them
harder to predict. Unlike Re = 125, which extrapolates well due to similar
flow behaviour to the training cases, Re = 50 and Re = 55 are both unseen
and near the critical Reynolds number, where abrupt regime changes hinder
extrapolation.

Second, the elevated relative loss reflects the impact of the chosen nor-
malisation. We used pseudo-normalisation, dividing by the square root of the
snapshot norm rather than the full norm, as this facilitated learning for high
Reynolds number flows, where full normalisation proved less effective. While
pseudo-normalisation partly mitigates uneven learning, it does not eliminate
it, leading to slightly poorer results for lower Reynolds number trajectories.

Finally, the tuning of the loss normalisation reflects the emphasis in fluid
dynamics on higher Reynolds number flows. Since current methods already
perform well at Re = 50, our method’s main contribution lies in delivering
robust performance for higher Reynolds number trajectories.

9. Conclusion

Our hybrid approach, combining POD-Galerkin techniques with autoencoder-
based neural networks, has demonstrated clear advantages across diverse non-
chaotic test cases, providing a versatile framework for addressing multiple
challenges in reduced-order modelling. In the Burgers equation, the model
consistently outperformed traditional ROMs, particularly in high-frequency
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regimes. For the cylinder flow problem at Re = 100, it accurately captured
both large and fine scale structures, surpassing conventional POD-Galerkin
ROMs and methods correcting only the POD subspace error. Extending the
Reynolds number range from 60 to 120 further confirmed robustness, with
accurate predictions across regimes and promising potential for real-world
applications. Stability analysis reinforced this, showing reliable predictions
over extended horizons and under substantial perturbations of initial condi-
tions, with the model consistently recovering the correct limit cycle despite
transient disturbances.

The study focused on non-chaotic systems, providing a stable setting to
assess predictive capability. Current work is extending the approach to the
fluidic pinball test case in the chaotic regime. This will test the model’s
forecasting ability on more intricate dynamics.

Our investigation into optimal latent space composition retained 18 vari-
ants for the Burgers equations, 8 for the cylinder flow test case, and an-
other set for the parametric cylinder flow, totalling 27 variants, excluding
those from hyperparameter tuning. This analysis clarified how latent space
configurations affect performance. The chosen test cases posed varied chal-
lenges, from handling sharp fronts in the Burgers equation to capturing fine
structures in higher Reynolds number flows, improving understanding of the
method’s capabilities.

The two-tier POD structure raises two questions: (1) At what resolu-
tion should the solution be predicted to exclude negligible noise or irrele-
vant scales? (2) What computational resolution is feasible for the first-tier
POD-Galerkin ROM? Our approach offers flexibility to address this trade-
off, with the deep learning component particularly effective for solutions with
sharp fronts or fine details. By complementing the POD projection error, the
method captures dynamics both within and beyond the chosen POD trun-
cation. A capability valuable for complex flows where traditional ROMs
struggle to represent the full range of dynamics.

An interesting future direction is replacing the standard POD-Galerkin
ROM with hyper-reduction techniques such as ECSW, which offer substan-
tial computational speed-ups and extend applicability to large-scale, general
nonlinear systems. While hyper-reduction may introduce a small numerical
error, its impact is limited if the reduced model preserves the dominant dy-
namics. In such cases, the ROM’s role within the hybrid architecture remains
unchanged, and the neural network’s correction term can compensate for the
added approximation. This work thus provides a baseline for assessing future
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ECSW-augmented versions.
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writing process

During the preparation of this work the authors used chatGPT 4o in
order to improve the readability in small sections of the article. After using
this tool/service, the authors reviewed and edited the content as needed and
take full responsibility for the content of the published article.

Appendix A. Deep Learning Implementation Details and Hyper-
parameter Tuning

Appendix A.1. Overview
This appendix provides additional information on our deep learning im-

plementation, focusing on hyper parameter tuning strategies, training pro-
cedures, and computational costs. These details aim to address fairness con-
cerns in comparisons to other methods and to address model training time.

Appendix A.2. Hyperparameter Tuning for Our Model
We employed Bayesian search to explore hyperparameters in the limit

of 300 runs per test case , ensuring appropriate architectures for both our
method and the retrained concurrent approaches. Separate searches were
performed for the Burgers equation, the cylinder flow, and the parametric
cylinder flow. Table A.6 summarises the main hyperparameters considered.

Table A.6: Key hyperparameters tested in our grid searches.

Optimiser: {SGD, ADAM, AdaBelief}
Normalisation: {None, LayerNorm, BatchNorm}
Activation: {ReLU, LeakyReLU, SiLU}
Time Integrator (TI) hidden layers: [ [64, 64, 64, 64], [128, 256, 128], [256, 128] ]
Encoder/Decoder hidden layers: [ [64], [128], [128, 64], [256, 128], [256, 96] ]
Initial Learning Rate: {5e-3, 2e-3, 1e-3, 5e-4, 1e-4}
Learning Rate Decay: {Disabled, Enabled} (decayed to 1e-5)
Dropout in Time Integrator: {0.0, 0.1}
Reconstruction Loss: {L2 on POD coefs, L2 on full space, L2 + H1 norm}
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For problems with a validation set (e.g. Burgers and parametric cylinder
flows), training was halted once the validation loss stagnated. For the stan-
dard cylinder flow, we employed a fixed epoch budget of 20,000, after which
all models converged or showed negligible improvement.

Concurrent Model Training. To ensure fair comparisons with fully data-
driven and exclusively POD-based models, we preserved our chosen layer
counts and widths for these concurrent architectures. Because our hybrid
model adds relatively few parameters through its ROM-based encoding, this
arrangement helped maintain a comparable parameter count among all meth-
ods. We retuned the remaining hyperparameters (e.g. optimiser, learning
rate) for each model using the same grid search approach described above.
Tuning of encoder / neural ODE / decoder fully data driven models in prac-
tice converged to the same optimal hyper parameter values to our models.

Appendix A.3. Training Protocol and Sequence Length Scheduling
All experiments were performed in PyTorch (v2.0.1) [68] with PyTorch

Lightning (v2.1.2) [69], and tracked via Weights and Biases (v0.15.12) [70].
We used the Euler method within a Neural ODE framework for forward
integration and no adjoint method for backpropagation, unless stated other-
wise. Among SGD, ADAM, and AdaBelief, the latter emerged as a strong
choice for most of our tests, though in specific settings (e.g. Burgers) ADAM
sometimes performed comparably.

Sequence Length Scheduling. A key aspect of our training setup is the au-
toregressive nature of trajectory prediction, which can be computationally
intensive. Instead of training on a long trajectory from the start, we progres-
sively increased the sequence length as training epochs advanced. This helps
prevent early divergence and allows the model to learn short-term dynamics
before tackling longer time horizons. Below is a simplified outline of our
scheduling approach:

• Burgers equation: Began with sub-sequences (25–50 time steps) and
gradually incremented to a maximum of 300 steps by epoch 8,000.

• Cylinder flow: Initially trained on sequences of length 25; increased
to 400 steps once the model stabilised (after 4,000 epochs).

• Fluidic pinball: Training began with 20-step sequences and doubled
progressively (up to 80 steps) when loss dropped below 10−3.
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Appendix A.4. Training Times and Hardware Usage
Experiments were conducted on NVIDIA Tesla V100S GPUs. Table A.7

shows the best hyperparameters selected and wall clock average training
times for each test case. Although the final architectures are relatively small,
the sequential (autoregressive) nature of Neural ODE training can prolong
training times, as it limits GPU parallelisation. Shortening the maximum
sequence length or refining the scheduling strategy can substantially reduce
training durations without severely degrading accuracy.

Table A.7: Selected best hyperparameters and approximate training times for each test
case.

Hyperparameter Burgers Cylinder Param. Cylinder Pinball Hybrid
Optimiser ADAM AdaBelief AdaBelief AdamW
Normalisation (AE) None LayerNorm LayerNorm None
Normalisation (Time) None LayerNorm LayerNorm LayerNorm
Activation LeakyReLU SiLU SiLU SiLU
TI hidden layers [256,128] [128,256,128] [128,256,128] [256,256,256]
AE hidden layers [256,96] [256,128] [256,128] [256,128]
Max training epochs 10,000 20,000 20,000 20,000
Learning Rate Decay Yes Yes Yes Yes (exponential)
Approx. Training Time ∼ 4 hours ∼ 12 hours ∼ 24 hours ∼ 24 hours

In practice, once training is complete, the model’s inference (also autoregres-
sive) is significantly faster than high-fidelity simulations, offering speedups
especially in multi-query contexts where repeated evaluations are required.
Hence, while offline training can be lengthy, it can be justified by the sub-
stantial gains in computational efficiency during deployment.

Appendix B. Investigating Parameter Dependence of the Learnt
Model for the Parametric Cylinder Flow Test Case

In this appendix, we analyse the parameter dependence of the cylinder-
flow test case used in Sec. 7. Navier Stokes is a Non linear equation with
respect to parameter choice (e.g., u(Re+ δRe) ̸= u(Re)+ δRe ∂u/∂Re), our
goal is to assess whether an affine-in-Re approximation is admissible over the
parameter range considered. To this end, we quantify (i) the interpolation
error of the steady base flow w0(Re), and (ii) the impact on the dynamics
prediction of using an affine hypothesis for the construction of the ROM.
This evaluation clarifies the additional learning challenge induced by the
parameter and motivates the inclusion of parametric tests.
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Appendix B.1. Empirical Verification and Quantification of Non-Affine Be-
havior

Figure B.28: Comparison between the true base flow at Re = 90 and the affine approxi-
mation wlin = 1

2 (w60 +w120). The difference field highlights discrepancies near the end
of the recirculation bubble.

Let w = [u, v, p]⊤ denote the full state vector. We compare the base
flow at Re = 90 (w90) with the linear approximation spanning the studied
parameter range:

wlin :=
1

2
(w60 +w120) .

The relative L2 errors on the flow fields are ∼ 1%, ∼ 10%, and ∼ 40% for
u (streamwise velocity), v and p, respectively. Except for u, these values
are far from negligible. Moreover, the largest discrepancies appear near the
recirculation bubble (Figure B.28), which is known to be the zone that most
strongly influences the unsteady dynamics in the cylinder flow case [71].

Appendix B.2. Impact on Derivative Predictions
Let us split the reduced state a ∈ Rn (n = 100) as:

a =

[
a∥
a⊥

]
, a∥ ∈ Rn∥=3, a⊥ ∈ Rn⊥=97.

The Linearised Navier–Stokes operator can then be decomposed as:

L(Re) =

[
L∥∥(Re) L∥⊥(Re)
L⊥∥(Re) L⊥⊥(Re)

]
.
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One can compare the true operator with its affine approximation, defined
respectively as:

Ltrue := L(90), Llin :=
1

2
L(60) + 1

2
L(120).

To assess the impact of operator interpolation on dynamics, we compare
instantaneous time derivatives predicted by the full reduced-order model,
which includes the implicit linear term and explicit nonlinear term.

Nonlinear contribution..

[N (a)]i = a⊤N (i) a, i = 1, . . . , n, (B.1)

where N (i) ∈ Rn×n are the slices of the nonlinear tensor N .

Time-stepping scheme.. The ROM is advanced using a second-order semi-
implicit scheme:

an+1 = an +∆t ȧn+1/2, (B.2)

with midpoint derivative:

ȧn+1/2 =
4an − an−1

2∆t
+ 2

(
N (an)−N (an−1)

)
. (B.3)

The derivative estimate is:

f =
1

∆t

(
M−1rhs− an

)
, (B.4)

where
rhs = 4an − an−1 + 4∆tN (an)− 2∆tN (an−1). (B.5)

Comparison test.. For (an−1, an) from the reference trajectory:

f true =
1

∆t

(
M−1

truerhs− an
)
, (B.6)

f lin =
1

∆t

(
M−1

lin rhs− an
)
, (B.7)

with Mtrue = I −∆tLtrue and Mlin = I −∆tLlin.
Relative error:

ε =
∥f true − f lin∥2

∥f true∥2
. (B.8)
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Average errors:

Full interpolation: ε∥ = 3.67× 10−3, ε⊥ = 3.66× 10−2,

Only L∥∥ true: ε∥ = 5.99× 10−4, ε⊥ = 3.66× 10−2.

Block-swap results:

L∥∥ swapped: ε∥ = 4.40× 10−3,

L∥⊥ swapped: ε∥ = 8.89× 10−4,

L⊥∥ swapped: ε⊥ = 8.32× 10−3,

L⊥⊥ swapped: ε⊥ = 7.00× 10−3.

In conclusion, even with L∥∥ exact, coupling and ⊥-blocks induce signifi-
cant errors. A 5× 10−4 error on ∥ modes and 3× 10−2 on ⊥ modes implies
decorrelation within O(100) steps for the latter and O(200) for the former
(about one shedding cycle). This highlights the need for nonlinear parameter
dependence modeling and justifies the test case as a nontrivial parametric
example.
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