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Abstract

Text detection and recognition in real images taken in
unconstrained environments, such as street view images, re-
main surprisingly challenging in Computer Vision.

In this paper, we present a comprehensive strategy com-
bining bottom-up and top-down mechanisms to detect Text
boxes. The bottom-up part is based on character segmen-
tation and grouping . The top-down part is achieved with a
statistical learning approach based on box descriptors. Our
main contribution consists in introducing a new descriptor,
Fuzzy HOG (F-HOG), fully adapted for text box analysis.
A thorough experimental validation proves the efficiency of
the whole system outperforming state of the art results on
the standard ICDAR text detection benchmark.

Another contribution concerns the exploitation of our
text extraction in a complete search engine scheme. We
propose to retrieve a location from a textual query: com-
bining our text box detection technology with OCR on geo-
referenced street images, we achieved a GIS1 system with a
fully automatic textual indexing. We demonstrate the rele-
vance of our system on the real urban database of [10].

1. Introduction
Text detection is still a very challenging task in Com-

puter Vision. Many approaches have been proposed, but
most of them are dedicated to specific contexts, such as au-
tomatic localization of postal addresses on envelopes [11],
license plate localization [14], or Optical Character Recog-
nition (OCR) for scanned documents. They are very suc-
cessful when applied to scanned pages of well formatted
printed text, but quickly failed in many other contexts. To be
convinced, just think to the successful visual CAPTCHA2

application, where text image is explicitly constructed to
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1Geographic Information Systems
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fool computers.

Raw Image OCR (Tesseract)

Figure 1. Text Detection & Recognition in Urban Context with a
public OCR (Tesseract): lists of characters that contain almost no
(piece of) words but a lot of noise.

Preprocessed Image Detected Text Tesseract

Figure 2. Our strategy for Text Detection & Recognition in Urban
Context. There are many readable words and few noise.

For street view images as the one presented in figure 1,
applying an OCR is even a complete failure. Actually, street
images makes the context of text detection and recognition
especially hard, with the main challenges of extreme text
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size and font variations, strong background clutter and dif-
ficult illumination conditions, etc. In this context, applying
off-the-shelf Optical Character Recognition (OCR) tools on
raw input street images is very unlikely to succeed. For ex-
ample, when processing the street image in figure 1 with a
publicly available OCR (Tesseract), the OCR results contain
very few readable (piece of) words.

We propose here a complete system dedicated to text de-
tection and recognition on such complex images. Basically,
we process the input images in order to locate text box can-
didates that we connect to OCR input. For detection, our
strategy combines bottom-up and top-down mechanisms to
detect based on a new HOG-like descriptor dedicated to text
analysis. The strategy is illustrated on the same raw image
in figure 2. Thanks to our focus on relevant image patches,
OCR produces a much more relevant list of words coming
from the input image. For example, applying a simple OCR
(Tesseract) on boxes pre-selected by our text detector makes
the whole recognition process successful (figure 2).

2. Related Works and contributions
In this section, we give a brief overview of state of the

art text detection approaches.
Regarding methodology, the different approaches can be

classified into bottom-up and top-down strategies. Bottom-
up methods first attempt at detecting individual characters
and then merge neighboring positive detections. The main
difficulty is to efficiently isolate single characters due to
the ambiguity of local and low-level visual features. Con-
trarily, top-down approaches directly look for text in image
(sub)regions, mostly using a scanning window mechanism.
However, this brute force strategy is extremely computa-
tionally demanding since the number of windows to analyze
exponentially grows with respect to the deformation param-
eters (e.g. scale, rotation, apse ct ratio). Therefore, most
practical system must resort to approximations: a coarse
discretization of the parameters or limiting some degrees of
freedom (fixed aspect ratio or text orientation, for example).

ICDAR conference organized robust reading competi-
tions [9] which goal is to establish a common benchmark
giving a clear understanding of the current state of the art
of such algorithms. This dataset became a standard base-
line for comparing text detection systems. Interestingly, the
two leading systems of the last ICDAR challenge [9] rely
on different methodologies. Hinnerk Becker [9] (best sys-
tem) developed a bottom-up approach that uses an adap-
tive finalization scheme to extract character regions which
are then combined fulfilling some geometrical constraints
to create text lines. Alex Chen et al [9] (rank 2) developed
a top-down approach that makes use of a statistical analysis
over text regions to select relevant features for characteriz-
ing text. Then, they use a cascade of classifiers trained over
the chosen features to select regions candidates. Finally,

connected components are extracted over these regions, and
analyzed to recover each text word.
Many approaches have been evaluated in the ICDAR dataset
since 2005. We focus here on two recent papers that are
closely connected to our approach. In [5], Epshtein et.al.
propose a new operator, the so-called Stroke Width Trans-
form (SWT) to detect characters in images. Each charac-
ter is supposed to have a nearly constant stroke width. In
addition, the authors provide a new annotated with urban
scenes taken with hand-held cameras. In [1], Chen et.al.
propose to apply a connected component labeling algorithm
after pre-processing each input image with MSER. The let-
ter candidates are then filtered out using stroke width infor-
mation. Both approaches are clearly bottom-up: character
candidates are aggregated to generate text line hypotheses,
and eventually decomposed into words. Both system report
similar results in the ICDAR dataset [9], achieving state of
the art performances.

In this paper, we propose a text detection scheme effi-
cient in urban context. The proposed approach, depicted in
figure 3, combines bottom-up and top-down mechanisms.
The bottom-up stage (hypothesis generation) consists in
character segmentation, classification and grouping, and is
inspired from [10]. The top-down phase is dedicated to val-
idate each text box hypothesis using global descriptors, i.e.
complementary features from the bottom-up steps that only
analyze single characters locally. This hypothesis validation
is significant improved with respect to [10], and we pro-
pose here a novel descriptor, that we denote as Fuzzy HOG
(F-HOG), to accurately represent each text box hypothesis.
The second paper contribution concerns the integration of
our approach into a real GIS search engine application.

The remainder of the paper decomposes as follows. Sec-
tion 3 gives a brief overview of the bottom-up steps of the
proposed detector, while section 4 describes the F-HOG. A
experimental validation of the proposed text detector is pro-
posed in section 5, showing that our system outperforms
state of the art results in the ICDAR database. In addi-
tion, section 6 evaluates the whole system (text detection
and recognition) in urban images. Finally, section 7 con-
cludes the paper and gives directions for future works.

3. Bottom-Up Text Hypotheses Generation
Regarding hypothesis generation, our algorithm is com-

posed of three main steps: image segmentation, character
classification, and character grouping.

The segmentation step is based on a morphological op-
erator, toggle mapping, introduced by Serra [13]. Toggle
mapping is a generic operator which maps a function on
a set of n functions and is generally used for contrast en-
hancement, noise reduction and successfully applied to im-
age segmentation [7]. In order to be effective in com-
plex images, such as urban images with large character size



Figure 3. The proposed text detection scheme.

variations and strong background clutter, we have extended
the segmentation algorithm [7] in a multiresolution fash-
ion [10]. This is illustrated in figure 4. Each resolution
level l is dedicated to detect a given range of text regions
scales. At coarser levels (e.g. l = 2, figure 4a)), we aim at
detecting large text areas, and ignoring texture details (high
frequencies). At finer levels (e.g. l = 0, figure 4b)), our
goal is to detect smaller regions, analyzing more accurately
the local image content. As shown in figures 4c) and 4d),
using our multi-resolution scheme is able to properly detect
text with large size variations, whereas a mono-resolution
cannot.

a) Segmentation at l = 2 b) Segmentation at l = 0

c) Mono-resolution d) Multi-resolution

Figure 4. Mono v.s. Multi-resolution segmentation.

The segmentation produces a set of homogeneous re-
gions. We now aim at discriminating regions that contain
text (characters) from those that do not. To achieve this
goal, we use a classification strategy based on the extrac-
tion of shape descriptors in each image region. We have
selected three families of descriptors: fourier moments,
pseudo zernike moments and a new definition of a polar
representation [6]. These descriptors are appealing since
they are scale and rotation invariant. Then, a hierarchical
SVM classifier [3] is used to discriminate characters from
non-character regions. Thus, we train three different classi-
fiers at the first level with each family of descriptors. The
final decision is given by merging the previous outputs into
a third SVM classifier (Figure 5).

Figure 5. Character Classification.

In order to build text hypotheses, we merge neighboring
recognized characters all together to recover text regions.
The conditions to link two characters to each other are in-
spired from [12]. They are based on the distance between
the two regions relatively to their height. During this pro-
cess, isolated text regions (single characters) are eliminated.
At the end rectangular windows are detected in the image.
These windows are the input for the hypothesis validation
step fully described in section 4.



4. Hypothesis validation: Fuzzy HOG
The hypothesis generation outputs a set of text window

candidates. Since the classification step only analyzes the
local image content around each character, false positives
occur in complex urban scenes where geometric objects
might be confused with characters. Some common false
positives are shown in figure 6: windows, guardrail, cob-
blestone, etc. For example, the bars of the guardrail have
a similar shape to a series of i’s or l’s. To filter out these
understandable false positives, we apply an hypothesis vali-
dation step which extract a global descriptor that is comple-
mentary to those used in the hypothesis generation process.
For example, in the guardrail case of figure 6, we aim at
extracting features encoding periodical patterns that are not
present in text regions. We train a SVM classifier having
the proposed descriptor as input for our hypothesis valida-
tion purpose.

Figure 6. Hypothesis validation: example of understandable false
positives from the bottom-up part of the system.

Our solution builds upon the general-purpose texture de-
scriptor known as histogram of oriented gradients (HOG),
developed by Dalal and Triggs [4], denoted as DT-HOG.
The HOG descriptor is based on the idea that a particular
texture can often be characterized by the distribution of the
directions of the image gradient. HOG-based descriptors
have been successfully used for the recognition of pedestri-
ans [4], objects [17] and for text detection [15, 16].

We propose a novel text region descriptor, Fuzzy HOG
(F-HOG), that presents three main improvements with re-
spect to HoG. As observed by Chen and Yuille [2], the top,
middle and bottom parts of Roman characters have distinc-
tive distributions of edge directions. Therefore, in the F-
HOG algorithm we split the normalized image into three
horizontal slices (section 4.1). For each pixel we compute
the local image gradient, and we build a histogram of the
gradient directions for each slice. Furthermore, the slices
are not sharp-edged but “fuzzy”, defined by smoothly vary-
ing weight functions w0, w1, w2 (section 4.2).

Figure 7 gives an overview of F-HOG computation. As
F-HOG is based in concatenating standard HOG in differ-
ent sub-regions, we briefly recall HOG computation. HOG
is based on the local gradient ∇I estimated at each pixel.
Then one builds a histogram of the directions θ(∇I) of
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Figure 7. Fuzzy HOG text descriptor scheme. For clarity, the his-
tograms are duplicated so as to cover the full range 0 to 2π.

the gradients, weighted by |∇I|. Figure 8 shows standard
HOGs of a few isolated letters, with orientation discretised
to 8 bins. Note that the HOG gives the predominant ori-
entation of the letter strokes. In particular the histogram of
a rounded letter like ‘O’ is almost uniform over the whole
range [0, π], while that of ’I’ has a spike at the directions
perpendicular to the letter’s stem.

Figure 8. HOGs of some isolated letters.



4.1. Multi cell HOGs

Images of complex objects typically have different
HOGs in different parts. Images of humans, for example
have different gradient orientation distributions in the head,
torso and leg regions. Therefore, in many applications, the
candidate region is partitioned into an array of cells, and a
HOG is computed separately for each cell. The concatena-
tion of those HOGs is taken to be the descriptor of the full
region.

For single-line text images, formed by Roman charac-
ters, it makes sense to analyze separately the distributions
of edge directions in the top, middle and bottom parts. As
shown in figure 9, it is expected that all three parts con-
tain mostly vertical or horizontal strokes, so that the gradi-
ents orientations are predominantly 0 (or 180) and 90 (or
270) degrees. The top and bottom parts should contain a
larger proportion of horizontal strokes, so that the gradi-
ents there are pointing mostly in the vertical direction. The
middle part is expected to have a larger proportion of ver-
tical strokes. In all three parts we expected to have a small
amount of diagonal strokes from letters such as ‘A’, ‘V’,
‘Y’, etc, and from rounded parts of letters such as ‘O’, ‘S’,
‘B’, etc.

Figure 9. From left to right we have the top, middle and bottom
HOGs for the text “RECOGNITION”. The arrows show the con-
tribution of specific letters strokes to the final descriptor.

4.2. Fuzzy cells

However, if the cells are defined by sharp boundaries, the
HOG may change drastically with small vertical displace-
ments of the text inside its bounding box. To avoid this
problem, we use “fuzzy” cells, defined by weight functions
w0, w1 and w2. The weight wk of each cell is a function of
the relative vertical coordinate

z =
y − ytop

ybot − ytop
(1)

where y is the vertical coordinate of the pixel, and ytop and
ybot are the estimated y coordinates of the top and bottom
contours of the text in the image. The value of wk(z) is a

number that vary smoothly between 0 and 1. When com-
puting the histogram for cell number k, each pixel (x, y)
of the normalized text image is assumed to have mass
|∇I(x, y)|wk(z).

Recall that each HOG is normalized to unit sum. There-
fore, only the shape of each weight function wk is impor-
tant. Scaling each wk by any positive factor will have no
effect on the final HOG.

This model is a generalization of hard-edged cells. These
can be emulated by defining each wk to be the appropri-
ate step function. See figure 10. For fuzzy cells we tested

w0 w1 w2

Figure 10. The step weight functions for hard-edged cells. The tic
marks and the dotted lines show the ordinates ytop, ybot.

different sets of weight functions (Gaussian bell functions,
Hann, etc). The best found consists of clipped and scaled
Bernstein polynomials. Namely, for n+1 horizontal stripes,
we use

wk(z) =


1 if k = 0 and z ≤ 0
1 if k = n and z ≥ 1
βn
k (z)/β

n
k (k/n) if 0 < z < 1

0 otherwise

(2)

where

βn
k (z) =

(
n

k

)
zk(1− z)n−k (3)

for k = 0, 1, . . . , n. See figure 11.

w0 w1 w2

Figure 11. The Bernstein weight functions for n = 2.

Dalal and Triggs also used (Gaussian) weight functions
in the DT-HOG [4], but in a different and more limited way.
Experimentally, we verify that the F-HOG descriptor out-
performs the DT-HOG in our text filtering context.



Figure 12. Panoramic street images generated in the project [10].

5. Text Detection: State of the Art Comparison

To compare the proposed text detector to state of the
art systems, we evaluate our performances on the ICDAR
2005 dataset. It is composed of 499 color images, cap-
tured with different digital cameras and resolutions, of
book covers, road signs, household objects, posters ,etc.
Some images are shown in figure 13. To evaluate perfor-
mances, we follow the protocol and use the metric described
in [9]. The precision and recall were defined as: p =
(
∑

re∈E m(re, T ))/|E| and r = (
∑

rt∈T m(rt, E))/|T |,
where m(r,R) defines the best match for a rectangle r in
a set of rectangles R, T and E are the groundtruth sets
and estimated rectangles respectively. To combine the pre-
cision and recall we use the f measure defined as [9]:
f = 1/(α/p + (1 − α)/r) where α is a weighting coef-
ficient (set to 0.5).

Figure 13. ICDAR 2005 Images.

The performance of our system in the ICDAR database
are shown in table 1. As we can see, our system com-
pares favorably with respect to state of the art methods.
Indeed, we output the best precision (73%, results similar
to Epshtein et.al. [5] and Chenet.al. [1]). In addition, we
get a better recall (61% vs 60%). Note that the best re-
call reported in this database is 67% (Hinnerk Becker), but
the algorithm has never been published, making a relevant
comparison difficult. Our overall performance is f = 67%,
one 1% above the best results reported ever (66% for [5]
and [1]).

3the algorithm is not published

System Precision (p) Recall (r) f
Our System 0.73 0.61 0.67
Epshtein [5] 0.73 0.60 0.66

Chen [1] 0.73 0.60 0.66
[10] 0.63 0.61 0.61

Hinnerk Becker 3 0.62 0.67 0.62
Alex Chen 0.60 0.60 0.58

Ashida 0.55 0.46 0.50
HWDavid 0.44 0.46 0.45

Wolf 0.30 0.44 0.35
Qiang Zhu 0.33 0.40 0.33
Jisoo Kim 0.22 0.28 0.22

Nobuo Ezaki 0.18 0.36 0.22
Todoran 0.19 0.18 0.18

Full 0.01 0.06 0.08
Table 1. ICDAR performance results.

6. Application to real keyword search engine
We propose to use the proposed text detector to provide

a application dedicated to retrieval semantically informa-
tion, through keyword search, in a real database of high-
resolution street images. The image dataset has been col-
lected in line with the project [10].

6.1. Project description

This project [10] has two main goals : –1. allowing a
user to navigate freely within the image flow of a city, –
2. extracting features automatically from this image flow
to automatically enhance cartographic databases and to al-
low the user to make high level queries on them (go to a
given address, generate relevant hybrid text-image naviga-
tion maps (itinerary), find the location of an orphanimage,
select the images that contain an object, etc). To achieve
this work, geo-localized set of pictures are taken every me-
ter. All images are processed off line to extract as many
semantic data as possible and cartographic databases are en-
hanced with these data. At the same time, each mosaic of
pictures is assembled into a complete immersive panorama.
On example of such panoramic image is shown in figure 12.



6.2. Performances

Figure 14 gives some detection results in the street im-
ages database from [10].

Figure 14. Detection Results on Images from [10] database

System Precision (p) Recall (r) f
Our System 0.69 0.49 0.55

[10] 0.46 0.49 0.48
Table 2. [10] Project performance results.

Regarding quantitative evaluation, the improvement with
respect to the results previously reported in [10] is impres-
sive: for the same recall (r=49%), we increase the preci-
sion of 23 pt (69% vs 46%) As our system and [10] mainly
differ with respect to the validation part, this illustrates the
relevance of using F-HOG in a text filtering context, par-
ticularly its superiority with respect to the standard HOG
used in [10]. This justifies the two improvements stated in

section 4.1 and 4.2, namely the horizontal splitting and the
fuzzy cells.

Figure 15 presents a visualization of some F-HOG de-
scriptors for text and non-text regions. In these examples,
we can notice that F-HOG clearly discriminates true pos-
itives from false positives. In addition, figure 15a) specifi-
cally points out the invariance of F-HOG with respect to text
line splitting (note that the HOG’s to different images are
very similar). This property would not hold for a standard
HOG with a vertical splitting, which clearly argues in favor
of only performing a horizontal decomposition. Therefore,
we claim that the proposed descriptor presents the adequate
balance between invariance and discriminability for our text
filtering purpose.

a) F-HOG for text regions

b) F-HOG for non-text regions

Figure 15. F-HOG of some text and non-text boxes.

6.3. Keyword Search Results

We run our text detector on each image, and process each
extracted text box with a publicly available OCR (Tesser-
act). Thus, each image is represented by a set a words
(strings). The user can then makes a textual query to re-
trieval images semantically relevant to it. The text query is
then matched against each word of the database, by comput-
ing the Edit distance [8]. Each image containing a match-
ing word is considered as relevant to the query. Figure 16
shows an example of processing the database with the query
”sushi”. We can notice that the system is able to output pos-
itive images, even with very small relevant text areas.

7. Conclusion
We have proposed a complete system for text detection

and recognition in urban context. One contribution of the
paper is to provide an efficient descriptor dedicated to text



Figure 16. Example of keyword search for the query ”sushi”.

filtering. The proposed F-HOG proves to be relevant to dis-
criminate text from non-text boxes. The second contribu-
tion is to apply OCR to each detected text box to provide
a keyword search tool. A thorough experimental validation
proves the efficiency of the system to manage real street
image databases. The main direction for future works is to
optimize the computation cost of the bottom-up steps.
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