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We discuss the use of histogram of oriented gradients (HOG) descriptors as an effective tool for text

description and recognition. Specifically, we propose a HOG-based texture descriptor (T-HOG) that uses

a partition of the image into overlapping horizontal cells with gradual boundaries, to characterize

single-line texts in outdoor scenes. The input of our algorithm is a rectangular image presumed to

contain a single line of text in Roman-like characters. The output is a relatively short descriptor that

provides an effective input to an SVM classifier. Extensive experiments show that the T-HOG is more

accurate than Dalal and Triggs’s original HOG-based classifier, for any descriptor size. In addition, we

show that the T-HOG is an effective tool for text/non-text discrimination and can be used in various

text detection applications. In particular, combining T-HOG with a permissive bottom-up text detector

is shown to outperform state-of-the-art text detection systems in two major publicly available

databases.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper we address the text/non-text classification problem.
The input data for this problem is a rectangular sub-image of a
digital photo or video frame. The output is a binary decision that
should be ‘TRUE’ if the sub-image contains a single line of text in
Roman-like characters and ‘FALSE’ otherwise. This classification is
an important step in many applications, such as optical character
recognition (OCR), indexing, classification of images and videos,
and urban navigation aids.

Towards this goal, we describe here the T-HOG publicly available
at [27], a novel gradient-based descriptor that efficiently and accu-
rately characterizes images of single-line texts. We show that a
support vector machine (SVM) classifier [1] using T-HOG descriptors
can effectively solve the text/non-text classification problem. In
particular, we show that the combination of a ‘permissive’ text
detector [2] with a T-HOG based post-filter outperforms state-of-
the-art text detectors described in the literature [3]. We also show
how the T-HOG could be used by itself in a top-down sliding-window
text detector, and as a component of an OCR system.

The T-HOG descriptor is based on the general histogram of

oriented gradients (HOG) [4] method for shape recognition, intro-
duced by Dalal and Triggs for the detection of pedestrians in
photographs [4] and later used for other solid objects [5]. In order
to capture the spatial distribution of gradient orientations, Dalal
ll rights reserved.

inetto).
and Triggs divided the target sub-image into a rectangular grid of
cells, computed a HOG for each cell, and concatenated those HOGs
to obtain a composite descriptor, which they called R-HOG.

In 2004, Chen and Yuille [6] observed that different parts of
the text regions have distinctive distributions of edge directions.
This property was exploited by other researchers who used the R-
HOG descriptors to characterize text regions [7–9].

The T-HOG descriptor is an improvement of the R-HOG, opt-
imized for the specific task of single-line text recognition. The
differences include a contrast normalization step, a different
gradient formula, and a specific cell layout with blurred bound-
aries. In this paper we determine experimentally the optimal cell
tiling for text line recognition, which turns out to be a division of
the candidate sub-image into horizontal stripes.

The T-HOG and R-HOG descriptors have several parameters that
can be tuned in order to trade classifier accuracy for descriptor
length. Smaller descriptors are interesting, even if less accurate,
because they are more computationally efficient and may help us
identify the aspects of the image that are most relevant for text/non-
text discrimination. In this paper we also compare the performance
of both classifiers experimentally for a wide range of parameters
settings. The tests indicate that T-HOG is more accurate than R-HOG
for any descriptor size.
1.1. Statement of the problem

We consider here images obtained from a physical scene.
A text object is any part of the scene carrying a string of two or
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Fig. 1. Image of an urban scene with text objects.
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more letters that are readable in the captured image. We are
primarily concerned with texts written in the Roman alphabet or
any of its variants. See Fig. 1.

Our text classifier assumes that the candidate text object has
been identified and its projection on the image has been bounded
by a rectangle. Furthermore, it assumes that the text consists of a
single multi-character line. Isolated characters and multiline text
should be joined or split into separate lines or words.
1.2. Descriptor outline

Dalal and Triggs observed that a particular texture can often be
characterized by the distribution of the directions of the image
gradient. If the texture consists of simple bi-level shapes (such as
Roman letters) then the orientations of the strongest gradients
tell the orientations of the edges of those shapes.

In order to capture the spatial variation of edge orientations,
Dalal and Triggs divided the input sub-image into a rectangular
grid of (possibly overlapping) cells with nx columns and ny rows,
which they grouped into 2�2 blocks. Within each cell of each
block they computed a histogram of the gradient directions
(HOG) with nb bins. In these histograms the gradient direction
of each pixel is weighted by the gradient’s magnitude and by a
Gaussian block weight mask. Their complete descriptor (R-HOG) is
a vector with nxnynb features, that is, the concatenation of these
nxny HOGs. Note that up to four overlapping or coincident cells
may cover the same set of pixels, and each will generate a
separate HOG, with different block weight functions. To reduce
the effects of local contrast and brightness variations, the HOGs in
each block are normalized in a specific way.

Our T-HOG descriptor differs from the original R-HOG in some
key details. Firstly, we use different methods to extract the
candidate text region, to normalize it for contrast, and to compute
its gradient image. Secondly, the cell grid is simplified to a
partition into horizontal stripes (i.e., we fix nx¼1). Instead of
overlapping blocks and block weight functions, in the T-HOG the
cells are defined by overlapping cell weight functions. As a result,
all internal cell boundaries are blurred, unlike those of the R-HOG.
See Fig. 2. As detailed in Section 4, these changes significantly
improved the discriminating power for our target objects—single-
line text regions of arbitrary length.
1.3. Structure of the paper

This paper is organized as follows. In Section 2 we discuss
some related work. In Sections 3 and 4 we precisely define the
R-HOG and T-HOG descriptors, and compare them experimen-
tally. In Section 5 we describe some applications. Finally, in
Section 6 we state the conclusions.
2. Previous work

There is an extensive literature on text detection, but most of it
are dedicated to specific contexts such as text detection in
handwritten documents [10], text recognition in medieval manu-
script images [11], and license plate recognition [12,28]. An
exhaustive review of this work is far outside the scope of the
paper, and the reader is referred to the survey of Sharma et al.
[13] that covers some advances in this area. Comparatively little
has been published about text/non-text classification algorithms
(our primary interest in this paper), although they are often
present as components of text detectors.

Text classification, or text verification [14], is often cast as a
texture classification problem, and several texture descriptors
have been considered in the literature. For instance, in 2004, Kim
et al. [15] described a text recognizer that decomposes the
candidate sub-image into a multiscale 16�16 cell grid and
computes wavelet moments for each block. Each block is then
classified as text or not using an SVM. The ratio of text to non-text
outcomes is used to decide whether the entire sub-region is text
or non-text. In 2005, Ye et al. [16] described a similar text
recognizer with multiscale wavelet decomposition but they used
more elaborate features including moments, energy, entropy, etc.

In 2010, Zhao et al. [17] used an edge detector based on the
wavelet transform, and sparse representation with discriminative
dictionaries to distinguish between text-like and background-like
edge patterns. The authors then merged and trimmed the candi-
date text-like edges into compact regions by using an adaptive
run-length smoothing algorithm, morphological operations, and
projection profile analysis. Also in 2010, Shivakumara et al. [18]
used six different gradient edge features (mean, standard devia-
tion, energy, entropy, inertia and local homogeneity) over
image blocks, to capture the texture property of the candidate
text region.

In 2004, Chen and Yuille [6] proposed a descriptor that
combines several features, including 2D histograms of image
intensity and gradient, computed separately for the top, middle,
and bottom of the text region, as well as for more complex sub-
divisions of the image—89 features in total. Recently some text
detectors, such as the one described by Anthimopoulos et al. [19]
in 2010, have used descriptors based on multiscale local binary

patterns (LBP) introduced by Ojala et al. [20]. Their descriptor has
256 features.

The use of gradient orientation histograms (HOGs) as texture
descriptors was introduced by Dalal and Triggs in 2005 [4] for
human recognition. HOG descriptors are used in some recent text
recognizers, such as the one proposed in 2008 by Pan et al. [8].
They partition the candidate sub-image into 14 cells, as proposed
by Chen and Yuille, but compute for each cell a 4-bin HOG
complemented by a 2�3 array of LBP features. Their complete
descriptor has 140 features.

Other HOG-based text recognizers have been proposed in 2009
by Hanif and Prevost [7] for single-line text, and by Wang et al. [9]
for isolated Chinese and Roman characters as well as single-line
text. Hanif and Prevost’s descriptor has 151 features (16 cells each
with an 8-bin HOG, supplemented by 7 mean difference and 16
standard deviation features). The descriptor of Wang et al. has 80
features (8 cells with an 8-bin HOG, supplemented by 1 mean
difference feature and 1 standard deviation over each cell).

All the HOG-based text recognizers above use vertical cuts as
well as horizontal ones when partitioning the candidate region,
apparently inspired by the Dalal and Triggs paper [4] on pedestrian
recognition. Vertical cuts may be justifiable for isolated characters,
but we determined experimentally (in Section 4.5) that they are not
useful for multi-character texts of variable width. In such texts, the
gradient distribution is largely independent of horizontal position.
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Fig. 2. Computing the T-HOG descriptor for a sample image with an nx � ny ¼ 1� 3 cell grid and nb¼24 histogram bins per cell. The images rIx and rIy are the derivatives

of the extracted and normalized sub-image I. The images yðrIÞ and rðrIÞ are the direction and magnitude of the gradient. The images w0, w1 and w2 are the cell weights.
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Therefore, we have determined that a cell layout with vertical cuts
increases the size of the descriptor without providing any additional
relevant information.
3. The T-HOG descriptor

In this section we provide a detailed description of the T-HOG
descriptor.

3.1. Size and contrast normalization

The first step of the T-HOG algorithm is to extract the sub-
image and scale it to a fixed height H, maintaining its original
aspect ratio. The height H should be large enough for the
characters to remain readable, but small enough to eliminate
most of the noise and other spurious detail. For print-style Roman
characters (upper and lower cases) we obtained the best results
with H between 20 and 25 pixels.

In this step we also convert the image from color to gray scale,
since the human visual system uses only the brightness channel
to recognize character shapes [21]. We observed that objects in
urban contexts are often obscured by non-uniform illumination
and localized shadows or reflections. To remove these artifacts,
we apply to each sample V of the extracted sub-image a contrast
normalization procedure V’0:5þðV�mÞ=ð3sÞ, where m and s are
the local mean and standard deviation computed with a doubly
binomial weight window of width 2Hþ1. The raw deviation s is
adjusted by s’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2þe2
p

, where e is the assumed standard
deviation of the image sampling noise.

3.2. The basic HOG descriptor

By definition, the HOG descriptor of an arbitrary image I is a
histogram of the gradient direction yðrIÞ, computed at each pixel,
quantized into a small number nb of bins. Each pixel contributes to
the histogram with ‘mass’ proportional to its gradient magnitude
rðrIÞ, so as to de-emphasize the random noise-related gradient
directions that occur in flat parts of the image. As observed by Dalal
and Triggs, if yðrIÞ does not fall at the exact center of a bin, the mass
should be distributed between the two nearest bins by a linear
splitting criterion. To compute the gradient rI, we use the simple
difference schema recommended by Dalal and Triggs, namely

rIðx,yÞ ¼
1

2
ðIðxþ1,yÞ�Iðx�1,yÞ, Iðx,yþ1Þ�Iðx,y�1ÞÞ

For this formula, any non-existing pixel (outside the input sub-image)
is assumed to be equal to the nearest existing pixel. Note that we
compute the gradient after grayscale conversion and contrast normal-
ization, whereas Dalal and Triggs compute the gradient in each color
channel and then pick the vector that has the largest norm. We then
estimated the magnitude of the gradient by the formula

rðrIÞðx,yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max f0,9rIðx,yÞ9�e2

q
g. Note that this formula is zero

if the raw gradient norm 9rI9 is smaller than the assumed sampling

noise deviation e.
The gradient direction yðrIÞ is expressed as an angle in the range

½0,2p� radians. Dalal and Triggs found that the recognition of some
classes of objects (such as humans) was improved when opposite
directions were considered equivalent [4], in which case the range of
yðrIÞ is ½0,p� radians. We found that this is not the case for text,
where the directions had little effect.

Fig. 3 shows the gradient magnitude and direction of four
isolated letters and their corresponding HOG descriptors. The
HOGs have 16 bins, each bin 2p=16 radians wide, centered at
orientations 2kp=16 for k¼ 0,1, . . . ,15. One can see that the HOG
gives the predominant orientation of the letter strokes. For
example, the histogram of a rounded letter like ‘O’ is almost
uniform over the whole range ½0,p�, while that of ‘I’ has significant
spikes in the directions perpendicular to the letter’s stem.



Fig. 3. From left to right, in each row: the extracted image I of an isolated letter,

images with its gradient magnitude rðrIÞ and gradient direction yðrIÞ, and the

corresponding HOG.

Fig. 4. From left to right, the 16-bin HOG descriptors of the top, middle and

bottom parts of a text sub-image. The arrows indicate the contribution of specific

letter strokes to the histogram.

Fig. 5. Top, middle, and bottom 16-bin HOG descriptors of some non-text images.

R. Minetto et al. / Pattern Recognition 46 (2013) 1078–1090 1081
3.3. Multi-cell HOGs

Images of complex objects typically have different HOGs in
different parts. Images of humans, for example, have different
gradient orientation distributions in the head, torso, and leg
regions. It was this observation that motivated Dalal and Triggs
to use a multi-cell HOG (R-HOG) for that application.

This observation is also true for text images. Fig. 4 shows the
distributions of edge directions in the top, middle, and bottom
parts of an image containing a single-line of text. Note that the
gradient orientations are predominantly 0 (or 180) and 90 (or 270)
degrees, reflecting the predominance of vertical and horizontal
strokes. Also note that the top and bottom parts of the image
contain a larger proportion of horizontal strokes, so that the
gradients in these parts are mostly vertical. The middle part of the
image, on the other hand, contains a larger proportion of vertical
strokes, and hence of horizontal gradients. In all three regions there
is a small amount of diagonal strokes due to letters such as ‘R’ and
‘M’; and to the rounded parts of letters such as ‘R’, ‘D’, and ‘O’.
Finally, note that opposite directions tend to be equally represented
due to the fact that the two edges of a letter stroke have opposite
gradients.

For comparison, Fig. 5 shows the HOG descriptors of top,
middle and bottom regions of some non-text images. Note that
several of these HOGs are quite distinct from those of Fig. 4, and
some are significantly unbalanced. On the other hand, for an
image containing an arbitrary single-line, multi-character text,
the expected distribution of gradient orientations is largely
independent of the horizontal position along the line, as long as
the segment analyzed is wide enough to include one whole
character. This intuition was confirmed by extensive experimen-
tal tests; see Section 4.5.
3.4. Cell weights

If the cells were defined by sharp boundaries, their HOGs
would change drastically with small displacements of the text
inside the candidate sub-image, as letter strokes would shift from
one cell to the next. See Fig. 6(a, b). To reduce this problem, the
T-HOG cells are defined by smooth cell weight functions. This choice
made the T-HOG more robust to such problems. See Fig. 6(c, d).

Namely, let xmin, xmax, ymin, and ymax be the minimum and
maximum pixel coordinates in the sub-image. For each pixel with
center coordinates (x,y), we define the relative pixel coordinates

XðxÞ ¼
x�xmin

xmax�xmin
, YðyÞ ¼

y�ymin

ymax�ymin
ð1Þ

The weight of that pixel relative to a cell Cij in column i and row
j of the cell grid is then defined as wijðx,yÞ ¼ uiðXðxÞÞvjðYðyÞÞ, where
each function ui or vj is 1 at the nominal axis of the respective
column or row, and falls smoothly to 0 as one moves away from
it. The gradient of that pixel contributes to the histogram of cell
Cij with mass rðrIÞðx,yÞwijðx,yÞ, rather than just rðrIÞðx,yÞ.
3.4.1. Gaussian cell weights

For the one-dimensional weights ui and vj, we tested different
families of functions (Gaussian bells, Hann windows, Bernstein
polynomials, etc.). In these experiments, the best results were
obtained with Gaussian bell functions. Specifically, for ny42 rows



Fig. 6. Effect of sharp cell boundaries with two different cropped sub-images of the same text object. (a, b) The HOG descriptors of the top, middle, and bottom parts of

each sub-image using sharp cell boundaries. (c, d) The HOG descriptors of the top, middle, and bottom parts of each sub-image using smooth cell boundaries.

0 1 0 1 0 1
v0 v1 v2

Fig. 7. The T-HOG vertical cell weight functions v0, v1, and v2 for ny¼3.

0 1 0 1 0 1
v0 v1 v2

Fig. 8. Step weight functions v0, v1, and v2 used to emulate hard-edged cells in the

T-HOG model.

w00 w01 w02

w02w01w00

Fig. 9. The Dalal and Triggs’s cell weight functions for a single block of 1�3 cells.

Top: optimal block weight deviations sx ¼W=2, sy ¼H=2. Bottom: default block

weight deviations sx ¼W=4, sy ¼H=4.

w00 w01 w02

Fig. 10. The Dalal and Triggs’s cell weight functions for 1�3 single-cell blocks,

each with height H/2 and overlapped with stride H/4, and with the default block

weight deviations sx ¼W=4 and sy ¼H=8.
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of cells, the vertical weight function of cells in row j is

vjðYÞ ¼ g �m0þ
1þ2m0

ðny�1Þj
,
s0

ny
, Y

� �
ð2Þ

where m0 ¼ 0:01, s0 ¼ 0:5, and

gðm,s,zÞ ¼ exp �
ðz�mÞ2

2s2

 !
ð3Þ

Fig. 7 shows these weights for ny¼3.
As a special case, if ny¼1, the single vertical weight function v0

is equal to 1 everywhere. Note that the top edges of the topmost
cells and the bottom edges of the bottommost cells are still sharp.
The horizontal weight functions ui are defined in the same way.
3.4.2. Emulating cells with hard edges

Hard-edged cells can be emulated in the T-HOG by defining
each function ui or vj to be the appropriate step function. See
Fig. 8.
3.4.3. Relation to R-HOG weight functions

Dalal and Triggs also used Gaussian weight functions, but in a
different and more limited way. Their weight functions were
associated to cell blocks (usually containing 2�2 cells) rather
than individual cells. With the parameters they used for human
recognition, the internal cell boundaries in each block are sharp,
while the edges of the sub-image itself fade gradually to zero.

Fig. 9 (top) shows the effective R-HOG cell weight functions for
the best parameter configuration we found using ny¼3 cells:
namely, a single block divided into 1� ny cells with a fairly broad
block weight function (sx ¼W=2, sy ¼H=2, corresponding to
setting the wtscale parameter to 1 in their implementation).
With these parameters, the effective cell weight functions have
quite sharp boundaries, as shown in Fig. 9 (top).

Fig. 9 (bottom) shows the R-HOG cell weights for the same
parameters, but with narrower block weight functions recom-
mended by Dalal and Triggs for human recognition (sx ¼W=4,
sy ¼H=4, corresponding to the default wtscale¼2).

One can obtain R-HOG weights somewhat similar to the T-HOG
weights of Fig. 7 by using 1� ny overlapping blocks with one cell
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per block, as shown in Fig. 10. Comparing the cell weights of
Figs. 7 and 10, we observe that the latter assigns much lower mass
to pixels along the edges of the sub-image (among other differ-
ences). Presumably for that reason, the R-HOG classifiers with the
weights of Figs. 9 (bottom) and 10 were less accurate than the R-
HOG with the weights of Fig. 9 (top), for the same descriptor size;
and all three were worse than the T-HOG.
3.5. Normalization

Both algorithms, R-HOG and T-HOG, normalize the resulting
descriptor. Dalal and Triggs use a per-block normalization scheme,
which is intended to compensate for spatial variations of lighting
and contrast over the input image. Since the T-HOG algorithm
removes those effects beforehand, we simply divide the final
descriptor by the sum of all features plus a constant E (L1 norm).
3.6. Vector classification and thresholding

Like Dalal and Triggs, we use an SVM classifier [1] to turn the
descriptor zARN into a real-valued score f(z), such that positive
scores indicate ‘probably text’ and negative scores indicate ‘probably
non-text’. The SVM is defined as f ðzÞ ¼

PM
i ¼ 1 aiKðzi,zÞ�b where K is

the kernel [29], a function from RN
�RN to R; the zi are the M fixed

support vectors; the ai are real weights; and b is the bias or decision

threshold. The support vectors and weights are determined by a
training step from representative samples of text and non-text
descriptors.
3.7. Computation costs

The T-HOG and R-HOG algorithms have linear complexity, that
is, proportional to the number of pixels in the extracted sub-
image. Since the candidate text image is scaled to a fixed height H,
the cost is roughly proportional to the number of characters in the
text line.
Table 1
Sizes of the text and non-text samples Xi ,Bi used in our tests.

i Image set Detected regions Text (9Xi9) Non-text (9Bi9)

1 ICDAR 4961 1727 3234

2 iTowns 2242 714 1528

3 Epshtein 7518 1502 6016
4. Experiments

In this section, we describe an extensive set of experiments
performed in order to determine optimum values for the various
parameters of the R-HOG and T-HOG descriptors, and to compare
their performance in the basic text/non-text discrimination task.
These experiments strongly confirm the advantage of the two
main T-HOG innovations, namely the splitting of the image into
overlapping horizontal cells (Section 3.3) with blurred boundaries
(Section 3.4).
X1 :

X2 :

X3 :

B

B

B

Fig. 11. Samples of text regions (set Xi) and non-text regions (set Bi) extracted
4.1. Image collections

In our tests we used single-line text samples derived from
three image collections:
1.
1 :

2 :

3 :

by
The 2005 ICDAR Challenge collection [22], consisting of 499
color images of book covers, road signs, posters, etc., captured
with different cameras and resolutions.
2.
 A subset of the iTowns Project collection [23], consisting of 100
color images of Parisian fac-ades taken by a camera-equipped
vehicle (similar to Google’s Street View).
3.
 The Epshtein et al. benchmark [3], with 307 color images of
urban scenes, ranging from 1024�1360 to 1024�768 pixels,
taken with hand-held cameras.

These image collections are suitable benchmarks for text detectors,
but not for text classifiers. Therefore, we extracted from these image
collections six sets of candidate sub-images as follows: we processed
each image collection with SnooperText [2], a state-of-the-art text
detector algorithm, tuned for high recall and moderate precision.
Through visual inspection, we separated the candidate regions
returned by SnooperText into a set of text regions Xi, and a set of
non-text (‘background’) regions Bi, for i¼ 1,2,3. See Fig. 11. Table 1
gives the number of sub-images in each set. (For succinctness, we will
often omit the index i in the remainder of the paper.)
4.2. Error rate metrics

To quantify the performance of a binary classifier (R-HOG or
T-HOG) with a specific set of parameters, we adopted a ‘ranking-
based’ approach. That is, we evaluated the ability of the classifier
to score text regions higher than non-text regions, regardless of
the absolute value of the SVM score f(z).

Specifically, in our tests we randomly divided the set X

(respectively B) into two disjoint sets, each one with 50% of the
elements: a ‘training’ half X0 (respectively B0) and a ‘testing’ half
X00 (respectively B00). The sets ðX0,B0Þ were used to train the SVM.
We then applied the classifier to the complementary sets ðX00,B00Þ.
For several values of the SVM threshold b (see Section 3.6), we
computed the counts TPb, TNb (correct decisions, positive and
negative) and FPb, FNb (incorrect decisions). From these counts
we computed the classification success rates for the text and
SnooperText from the ICDAR, iTowns and Epshtein image collections.
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non-text regions on each evaluation dataset, namely

tb ¼
FNb

9X009
¼

FNb

TPbþFNb
, bb ¼

FPb

9B009
¼

FPb

TNbþFPb
ð4Þ

The tb metric (false negative rate) is the complement of the well-
known recall metric r; it is the probability of our algorithm
incorrectly rejecting a text-containing region. The bb metric (false

positive rate) is the probability of our algorithm incorrectly
accepting a non-text region. We choose to use bb instead of the
common precision metric because the latter depends strongly on
the ratio 9B009=9X009, which is essentially arbitrary.

By adjusting the threshold b, the user can trade one class of
errors for the other. In particular, when b is sufficiently small, the
classifier accepts all samples, so that tb ¼ 1 and bb ¼ 0. Conver-
sely, when b is sufficiently large, all samples are accepted as text,
therefore tb ¼ 0 and bb ¼ 1.

In order to reduce the sampling error, we repeated the whole
procedure L¼10 times for each pair of datasets ðX,BÞ resulting in L

different random partitions ðX0,X00Þ and ðB0,B00Þ for each set. The
raw statistics TPb, TNb, FPb, FNb were averaged over these L runs,
and for each b.

4.3. DET curve and area metric

We compare classifiers by plotting the decision error trade-off

(DET) curve [4,24], which is the set of pairs ðtb,bbÞ for
bA ½�1, . . . ,þ1�. See Fig. 12. For an ideal classifier, the DET
curve lies along the bottom and left edges of the unit square
½0,1� � ½0,1�. The better the classifier, the closer its DET curve
should be to this ideal.

In our tests we observed that whenever a classifier Ci was
significantly better than another classifier Cj for some threshold b,
the same usually happened for most other values of b. In other
words, the entire curve of Ci was closer to the ideal than that of Cj

(below and to the left of it). Therefore, we can use the decision

error area (DEA), which is the area A between the DET curve and
Fig. 12. Area under the curve A in grey.

Fig. 13. Some possible arrangements of blocks and cells that result in an R-HOG descrip

the external brackets show the blocks. (a) 6�1. (b) 3�2. (c) 2�3 (d) 1�6. (e) 6f�1
the ideal curve (the shaded region in Fig. 12), as a single scalar
measure of the performance of a given classifier, independent of
the threshold b. The value of A is a monotonically decreasing
function of the classifier’s accuracy, and is zero if the classifier is
perfect (i.e., if one can set the threshold b so that the classifier
makes no mistakes). Therefore, we can compare two classifiers Ci

and Cj by comparing the respective decision error areas Ai and Aj.
In order to determine whether the difference Ai�Aj is statis-

tically significant, we computed mean values lðAiÞ and lðAjÞ and
the standard deviations rðAiÞ and rðAjÞ over the L runs. We then
computed Student’s test parameter tðCi,CjÞ:

tðCi,CjÞ ¼
lðAiÞ�lðAjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2

L
þ

S2

L

s ð5Þ

where

S2
¼
ðL�1Þ � rðAiÞ

2
þðL�1Þ � rðAjÞ

2

2L�2
ð6Þ

The performance variation between Ci and Cj is considered
statistically significant at risk level a if 9tðCi,CjÞ9 is above the
corresponding threshold ta from Student’s table.

4.4. General parameter settings

In both the R-HOG and T-HOG algorithms, the sub-images were
rescaled during extraction with the Lanczos interpolation filter [25] to
the chosen height H. Since the extracted height must be a multiple of
the effective number of cell rows, we used H¼25 pixels for 5 rows,
H¼21 pixels for 7 rows, and H¼24 pixels for all other tests (with 1, 2,
3, 4, 6, 8 and 12 rows). The rescaled width W was chosen so as to
maintain the aspect ratio of the original sub-image, but rounded to
the nearest integer multiple of cell columns (which was 1 for most
tests). For the mean–variance normalization and for gradient magni-
tude computation, we assumed a sampling noise with deviation
e¼ 0:02. In all tests we used a Gaussian w2 SVM kernel K, whose
standard deviation parameter s was optimized by cross-validation on
the training sets ðX0,B0Þ.

In an extensive series of preliminary tests, we concluded that the
best performance of the R-HOG as text classifier, for all three datasets,
is achieved with L1 block histogram normalization, RGB colorspace
with gamma correction 0.5 (RGB_SQRT), oriented gradient directions
ranging over ½0,2p� or ½0,p�, and block mask parameter wtscale set
to 1 (sx ¼W=2, sy ¼H=2). In another series of tests, the best T-HOG
performance was obtained with L1 whole-descriptor normalization,
and oriented gradient directions ranging over ½0,2p� or [0,p]. These
optimal settings where then used for all subsequent tests.

4.5. Optimal cell arrangements

We next performed a series of tests to determine the optimum
cell arrangement for text/non-text classification with the R-HOG
tor with six HOGs. Solid and dashed lines inside the image are the cell boundaries;

. (f) 3h�2. (g) 2�3h. (h) 1�6f.
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algorithm, as a function of the total cell count nxny. R-HOG allows
the cells to be grouped into blocks, which may partially overlap. The
possible arrangements with six cells (counting overlaps) are shown
in Fig. 13. Arrangements (a)–(d) have disjoint, non-overlapping cells,
which could be grouped into disjoint blocks in several ways.
Arrangements (e) and (h) have two cells per block; note that the
two central cells are duplicated in the final descriptor. Arrangements
(f) and (g) have single-cell blocks that overlap by half a cell.
Fig. 14. DET curves (mean of 10 random partitions) of the R-HOG classifier, for various

last one, all grid configurations give the same descriptor size N¼ nxnynb . The last plot
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Fig. 15. Detection error area A (mean of 10 random partitions) of R-HOG as a function o

left plot, arrangements with the same ny (1, 2 or 3) and increasing nb are connected by li

the optimal configurations (black dots). (For interpretation of the references to color in
We tested many possible cell and block arrangements with
and without overlapping blocks. The DET curves for some combi-
nations of nx and ny with nb¼12 are shown in Fig. 14. Note that
the counts nx and ny include overlapping cells so that the
descriptor always consists of nxny HOGs. As mentioned in
Section 3.4, we concluded from these experiments that arrange-
ments with two or more blocks, overlapping or not, are not
advantageous for R-HOG. We have found that for the same
cell and block arrangements, on the ICDAR dataset X1, B1. In each plot, except the

compares the best combinations of the eight previous plots.
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descriptor size N¼ nxnynb and number of bins, a single block is
always better. Moreover, we concluded that, for the same
descriptor size, the best choice is always nx¼1, that is, a grid of
ny horizontal stripes. These conclusions were confirmed by
numerous tests with the other two datasets and with different
bin counts (nb ¼ 6,12,18 and 36).

A parallel series of tests with our T-HOG classifier gave entirely
similar results, confirming that nx¼1 is always the best choice for
any descriptor size.

4.6. Performance as a function of descriptor size

Having established that the best cell arrangement for R-HOG is
always a single block divided into disjoint horizontal stripes, we
performed another series of tests to analyze the influence of the
number of stripes ny and the number of bins per stripe nb on the
R-HOG classifier accuracy. Namely, we tested all combinations of
ny ¼ 1,2, . . . ,8,12 and nb ¼ 4,5, . . . ,18,24,36, with nx fixed at 1.
Fig. 15 shows the results of these experiments for Nr250.
Configurations are identified by the notation nx � ny : nb. From
these tests, we concluded that a longer R-HOG descriptor gen-
erally gives better results. However, the advantage is very small
for N greater than 100. In particular, no improvement was seen
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Fig. 16. Comparison between optimal configurations of R-HOG and T-HOG. The

error bars show the standard deviation over 10 random partitions of ðXi ,BiÞ on the

Epshtein dataset.
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Fig. 17. Comparison between optimal configurations of R-HOG and T-HOG. The error b

and iTowns datasets, respectively. Note that the vertical scale is different in each plot.
when N increased beyond 250. We also concluded that the
R-HOG’s accuracy improves dramatically as ny increases from
1 to 3, improves more gradually until ny is 7 or so, and remains
the same thereafter. These conclusions were found to hold for all
three datasets.

In Fig. 15 (bottom), the black dots represent the optimal
combinations of ny and nb, the only ones that are worth using
for any specified descriptor size N. Configurations that fall above
the solid staircase line (blue dots) are fully dominated by optimal
ones, in the sense that the latter provides equal or better
performance with equal or smaller N. There appears to be no
simple formula for the optimal parameters, partly because ny and
nb are constrained to be divisors of N. Furthermore, the optimal
configurations for the other two datasets are slightly different.

A similar series of tests were performed to determine the best
combination of ny and nb for the T-HOG classifier. We found that
the optimum combinations for each N were generally the same as
those of R-HOG (see the next section).
4.7. Comparison of T-HOG vs. R-HOG

Figs. 16 and 17 compare the accuracy of the R-HOG and T-HOG
classifiers, in the optimal ny and nb configurations, for each
descriptor size N and for each of the three datasets. As we can
see, the T-HOG significantly outperforms R-HOG in all cases. For
example, a T-HOG with about 20 features has a performance
similar to an R-HOG with 80 or more features.

Table 2 gives detailed data for two cell grid and bin count
combinations (1� 4 : 5, N¼20, and 1� 7 : 9, N¼63), selected
among the optimum combinations of Figs. 16 and 17. According
to Student’s table for 2L�2¼ 18 degrees of freedom, the smallest t

value in the table, 5.44, corresponds to a risk ao10�4.
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Table 2
Statistics of R-HOG and T-HOG classifiers for two optimal cell configurations.

nx � ny : nb Dataset R-HOG T-HOG t-Test

lðAÞ rðAÞ lðAÞ rðAÞ

ICDAR 0.0109 0.0010 0.0054 0.0007 14.73

1�4:5 iTowns 0.0158 0.0022 0.0082 0.0012 10.19

Epshtein 0.0285 0.0023 0.0151 0.0016 15.10

ICDAR 0.0042 0.0005 0.0029 0.0005 5.81

1�7:9 iTowns 0.0087 0.0013 0.0059 0.0010 5.44

Epshtein 0.0164 0.0022 0.0120 0.0014 6.14
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Fig. 16 shows that, for both classifiers, the ICDAR-derived

dataset is significantly easier than the other two. Presumably this
is due to the fact that most ICDAR images are digitized 2D
documents, whereas the iTowns and Epshtein images are photos
of 3D urban scenes.

4.8. Blurred vs. hard-edged cells

Finally, we performed another series of tests to quantify the
contribution of blurred cell boundaries to the T-HOG perfor-
mance. Detailed data for two specific configurations (1� 4 : 5,
N¼20, and 1� 7 : 9, N¼63) on the iTowns dataset are shown in
Table 3. According to Students t-test, the improvement is sig-
nificant (at risk level a¼ 0:05) for the 1� 4 : 5 descriptor
(t¼8.42), but not for the 1� 7 : 9 descriptor (t¼1.47).

4.9. Limitations

Fig. 18 shows some false negatives and false positives reported
by the T-HOG classifier (in the 1� 7 : 9 configuration) for the Xi

and Bi datasets. False negatives are usually due to an inaccurate
detection of the candidate sub-image, or to those texts that are
one or two characters long, obscured, or with incomplete char-
acters. False positives are typically images with many line-like
features in several orientations.
5. Applications

5.1. T-HOG as a post-filter to text detection

The motivating application for text classifiers such as T-HOG
and R-HOG is the detection of text in photos and videos of
arbitrary scenes [30,31]. Specifically, the idea is to use the
classifier to filter the output of a fast but ‘permissive’ (high-recall
and moderate-precision) detector.

To evaluate the suitability of T-HOG for this application we
used the SnooperText detector of Minetto et al. [2], which was
developed within the iTowns urban documentation and naviga-
tion project [23]. SnooperText uses a multiscale adaptive seg-
mentation to locate candidate characters, which are selected and
grouped into words and lines by geometrical criteria. Two critical
parameters of SnooperText are the minimum size l (in pixels) of
the detected character regions in each scale, and the minimum
number of characters per group (GOC). We found that the optimal
values of these parameters, when SnooperText was used alone,
were l¼ 10 and GOC¼3. That is, only words with 3 or more
Table 3
Statistics for two optimal T-HOG classifiers with sharp and blurred cells.

nx � ny : nb Dataset Sharp Blurred t-Test

lðAÞ rðAÞ lðAÞ rðAÞ

1�4:5 iTowns 0.0130 0.0014 0.0082 0.0012 8.42

1�7:9 iTowns 0.0065 0.0008 0.0059 0.0001 1.47

Fig. 18. Examples of sub-images incorrectly classified by
characters were reported. These settings are denoted ST3 in what
follows.

When SnooperText was used in combination with the R-HOG
or T-HOG as a post-filter, we found that the optimum parameters
were l¼ 5 and GOC¼2, which increase the recall but significantly
reduce the precision. We denote these settings by ST2. For the
T-HOG and R-HOG we used the optimal parameters specified in
Section 4.4, with the cell arrangement nx ¼ 1, ny ¼ 7, and nb¼9,
resulting in a descriptor of size N¼63. See Fig. 19.

5.1.1. Metrics for text detection

The standard metrics to compare text detection systems
described in the literature are based on the ICDAR 2005 measure
of similarity [22] between two rectangles r, s, and defined as
mðr,sÞ ¼ Sðr \ sÞ=Sðr [ sÞ where S(t) is the area of the smallest
rectangle enclosing the set t. The function mðr,sÞ ranges between
0 (if the rectangles are disjoint) and 1 (if they are identical). The
metric m is extended to a set of rectangles Z by the formula
mðr,ZÞ ¼maxfmðr,s0Þ : s0AZg. From this indicator one derives the
ICDAR precision p and recall r scores [22]

p¼

P
rAEmðr,TÞ

9E9
, r¼

P
rAT mðr,EÞ

9T9
ð7Þ

where T is the set of manually identified text regions in the input
images, and E is the set of text regions reported by the detector.
For ranking purposes, the ICDAR 2005 committee used the
f measure [22] which is the harmonic mean of precision and recall
f ¼ 2=ð1=pþ1=rÞ. There are several ways of averaging these
metrics over a multi-image database. The approach used by the
ICDAR 2005 scoring program (method I) is to evaluate p,r and
f separately for each image, and then compute the arithmetic
mean of the f-scores over all images. Another approach (II) is to
compute p and r for each image, then take the arithmetic means
of all p and r values, and compute f from these means. We note
that the first method suffers from higher sampling noise and a
negative bias compared to the other method. These points must
be considered when comparing f values reported by different
authors.

5.1.2. Results

We compared the performance of SnooperText alone and in
combination with a text recognizer, either R-HOG or T-HOG, as a
post-filter. We also compared them with several state-of-the-art
detectors described in the literature. Specifically, we compared
with the published scores of the detectors that entered the ICDAR
2003 and 2005 Challenges [22], and also with the detectors of
Tian et al. [26] and Epshtein et al. [3], which had the highest
f-scores reported in the literature (as of 2011).

The results for each of the three image collections are shown in
Tables 4–6. All p and r scores were computed with the ICDAR
scoring program [22]. The scores in the fI and fII columns were
averaged by methods I and II, respectively.

Note that T-HOG is a more effective post-filter for SnooperText
than R-HOG; and that the best combination (ST2þT-HOG) is much
better than the best results of SnooperText alone (ST3). Also note
that the combination ST2þT-HOG is at least as effective as the best
the T-HOG: (a) false negatives; (b) false positives.



Fig. 19. Output of the SnooperText detector with l¼ 5 and GOC¼2 (left), and the same output after filtering with the T-HOG recognizer (right) on an image from the

Epshtein collection.

Table 4
Performances of various text detectors on the ‘testing’ subset of the ICDAR image

collection. The competitors of the ICDAR 2003 and 2005 Challenges are marked

with y. For this table, the T-HOG and R-HOG classifiers were trained on the output

of the ST2 detector applied to the ICDAR ‘training’ subset.

System p r fI fII

ST2þT-HOG 0.73 0.61 0.65 0.67

ST2þR-HOGa 0.70 0.62 0.64 0.66

Yi and Tian [26] 0.71 0.62 0.62 0.66

Epshtein et al. [3] 0.73 0.60 0.66 0.66

ST3þT-HOG 0.72 0.57 0.62 0.64

ST3þR-HOGa 0.72 0.57 0.62 0.64

Hinnerk Becker y 0.62 0.67 0.62 0.64

ST3 0.64 0.59 0.59 0.61

Alex Chen y 0.60 0.60 0.58 0.60

ST2 0.42 0.65 0.47 0.51

Ashida y 0.55 0.46 0.50 0.50

HWDavid y 0.44 0.46 0.45 0.45

Wolf y 0.30 0.44 0.35 0.36

Qiang Zhu y 0.33 0.40 0.33 0.36

Jisoo Kim y 0.22 0.28 0.22 0.25

Nobuo Ezaki y 0.18 0.36 0.22 0.24

Todoran y 0.19 0.18 0.18 0.19

Full y 0.01 0.06 0.08 0.02

a Best R-HOG found using only horizontal cuts.

Table 5
Performances of SnooperText, with and without HOG post-filtering, on the whole

iTowns image collection. For this table, the R-HOG and T-HOG classifiers were

trained on the X1 [ X3 and B1 [ B3 datasets.

System p r fI fII

ST2þT-HOG 0.72 0.50 0.56 0.59

ST2þR-HOGa 0.70 0.49 0.54 0.58

ST3þT-HOG 0.72 0.43 0.51 0.54

ST3þR-HOGa 0.72 0.43 0.51 0.54

ST3 0.49 0.43 0.43 0.46

ST2 0.24 0.53 0.31 0.33

a Best R-HOG found using only horizontal cuts.

Table 6
Performances of SnooperText, with and without HOG post-filtering, and of the

Epshtein et al. detector on the whole Epshtein image collection. For this table, the

R-HOG and T-HOG classifiers were trained on the X1 [ X2 and B1 [ B2 datasets.

System p r fI fII

ST2þT-HOG 0.59 0.47 0.49 0.52

ST2þR-HOGa 0.55 0.44 0.46 0.49

ST3þT-HOG 0.64 0.39 0.46 0.49

Epshtein et al. [3] 0.54 0.42 – 0.47

ST3þR-HOGa 0.62 0.37 0.43 0.46

ST3 0.46 0.42 0.41 0.44

ST2 0.19 0.54 0.25 0.28

a Best R-HOG found using only horizontal cuts.
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published methods on the ICDAR dataset, and outperforms the
Stroke Width Transform (SWT) [3] results of Epshtein et al. on
their own dataset. The largest difference between the R-HOG
and T-HOG classifications is in the Epshtein dataset, where the
text candidates are much harder to classify (see the vertical plot
scales in Figs. 16 and 17).

To confirm the results of Section 4.5, we tested the ST2þ
T-HOG combination with a smaller descriptor (nx ¼ 1,ny ¼ 4,
nb¼5, N¼20). The f-score was about 1–2% lower, on average,
for the three image collections. We also tested the ST2þT-HOG
combination with the sub-image divided into vertical stripes
(nx ¼ 7,ny ¼ 1, nb¼9, N¼63); the f-score was about 5–7% lower.

5.2. T-HOG as a text detector

Any text recognizer can also be used on its own as a sliding-
window text detector. Namely, the recognizer is applied to a
sufficiently large set of sub-regions in the input image, and the
sub-regions with the largest scores are returned as the output.

Fig. 20 shows the result of such a text detector, using the
T-HOGþSVM recognizer, with a window of fixed size (24 by 72
pixels) sliding over the whole image. Note the high selectivity of
the recognizer. For this test, we trained the SVM classifier using
the set U of positive ‘ground-truth’ sub-regions provided by the
ICDAR Challenge team [22], and a set V of negative random sub-
regions of the ICDAR images disjoint from the set U and about
three times its size.

Text of variable size can be detected by running this algorithm
on several reduced versions of the input image, in a multi-scale
fashion. However, this brute-force approach to text detection is
extremely expensive, since the number of windows that need to
be analyzed is very large. For this reason we did not evaluate its
accuracy or compare it to other detectors.

5.3. T-HOG as a detection post-filter in OCR algorithms

OCR algorithms designed for unstructured 3D urban environ-
ments are of great interest to systems as the Google’s Street View
and the iTowns projects, which aim to extract (offline) any textual
information present in the images, such as street and traffic signs,
store names, and building numbers. With this information the
user can then make textual queries to retrieve images semanti-
cally relevant to him. However, standard OCR algorithms devel-
oped for scanned documents perform very poorly on photos of 3D
scenes. See Fig. 21(top). Much better results are obtained by
filtering the false positives with T-HOG. See Fig. 21(bottom).
6. Conclusions

In this paper we describe extensive experiments with Dalal and
Triggs’s multiple HOG descriptor (R-HOG) and SVM classification for
the text/non-text discrimination problem. These experiments showed



Fig. 20. Top left: image PICT0031 from ICDAR dataset (640�480 pixels). Top right: the output of the T-HOGþSVM sliding window classifier, encoded as the color of the

central pixel (warm tones for positive output, cold tones for negative). The white rectangle at the top left corner shows the size of the sliding window. Bottom: the union of

the 100 windows with the highest scores. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

Tesseract text detection Tesseract OCR

Tesseract OCRTesseract text detection + T-HOG

Fig. 21. Top left: the text detection of a top publicly available OCR (Tesseract). Top right: OCR of Tesseract with few readable words and a lot of noise due to the false

detections. Note that it is hard, in an urban context, to filter the strings with a dictionary since noise regions can be converted to words with meaning. Bottom left: the text

detection output of Tesseract after filtering the candidates with the T-HOG classifier. Bottom right: the OCR after filtering.
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that the optimum cell configuration, for any descriptor size, consists
of horizontal bands in a single weighting and normalization block.
Splitting the sub-image by vertical cuts is never cost-effective. In
retrospect, this conclusion makes sense, given the nature of the
‘object’ to be classified—a single line of text of arbitrary length.
Through these experiments, we also determined the best values for
the number of cells ny and the number of bins nb, for each descriptor
size N¼ ny � nb. In particular, we found that increasing N beyond 100
has practically no effect on classification accuracy.

We then defined another multiple HOG descriptor, the T-HOG,
whose cells have blurred boundaries defined by overlapping
Gaussian weight functions. An exhaustive series of experiments
confirmed that the best cell arrangement for the T-HOG text
classifier is also a stack of horizontal bands. These tests also
showed that the T-HOG classifier consistently outperforms
R-HOG at text/non-text discrimination, for any descriptor size N.

Finally, we described the use of T-HOG in three text-related
applications. First, we described the use of T-HOG as a post-filter
for a high-recall, low-precision text detector, and showed that the
combination is at least as good as the best text detectors reported
in the literature. We also showed that T-HOG is better than
R-HOG for this application. Second, we described the use of
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T-HOG in a sliding-window text detector, and gave anecdotal
evidence of its accuracy. Third, we described the benefits of T-
HOG in a well-known OCR software.
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