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Abstract

Existing region-based object detectors are limited to regions with fixed box geometry
to represent objects, even if those are highly non-rectangular. In this paper we introduce
DP-FCN, a deep model for object detection which explicitly adapts to shapes of objects
with deformable parts. Without additional annotations, it learns to focus on discrimina-
tive elements and to align them, and simultaneously brings more invariance for classifi-
cation and geometric information to refine localization. DP-FCN is composed of three
main modules: a Fully Convolutional Network to efficiently maintain spatial resolution,
a deformable part-based RoI pooling layer to optimize positions of parts and build invari-
ance, and a deformation-aware localization module explicitly exploiting displacements
of parts to improve accuracy of bounding box regression. We experimentally validate
our model and show significant gains. DP-FCN achieves state-of-the-art performances
of 83.1% and 80.9% on PASCAL VOC 2007 and 2012 with VOC data only.

1 Introduction
Recent years have witnessed a great success of Deep Learning with deep Convolutional
Networks (ConvNets) [19, 20] in several visual tasks. Originally mainly used for image
classification [17, 19, 35], they are now widely used for others tasks such as object detec-
tion [5, 13, 14, 24, 41] or semantic segmentation [3, 21, 26]. In particular for detection,
region-based deep ConvNets [5, 13, 14] are currently the leading methods. They exploit
region proposals [11, 28, 29] as a first step to focus on interesting areas within images, and
then classify and finely relocalize these regions at the same time.

Although they yield excellent results, region-based deep ConvNets still present a few
issues that need to be solved. Networks are usually initialized with models pre-trained on
ImageNet dataset [30] and are therefore prone to suffer from mismatches between classifi-
cation and detection tasks. As an example, pooling layers bring invariance to local transfor-
mations and help learning more robust features for classification, but they also reduce the
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Figure 1: Architecture of DP-FCN. It is composed of a FCN to extract dense feature maps
with high spatial resolution (Section 3.1), a deformable part-based RoI pooling layer to com-
pute a representation aligning parts (Section 3.2) and two sibling classification and local-
ization prediction branches (Section 3.3). Initial rectangular region is deformed to focus on
discriminative elements of object. Alignment of parts brings invariance for classification and
geometric information refining localization via a deformation-aware localization module.

spatial resolution of feature maps and make the network less sensitive to the positions of
objects within regions [5], both of which are bad for accurate localization. Furthermore, the
use of rectangular bounding boxes limits the representation of objects, in the way that boxes
may contain a significant fraction of background, especially for non-rectangular objects.

Before the introduction of Deep Learning into object detection with [14], state of the
art was led by approaches exploiting Deformable Part-based Models (DPMs) [8]. These
methods are in contrast with region-based deep ConvNets: while the latter relies on strong
features learned directly from pixels and exploit region proposals to focus on interesting
areas of images, DPM explicitly takes into account geometry of objects by optimizing a
graph-based representation and is usually applied in a sliding window fashion over images.
Both approaches exploit different hypotheses and seem therefore complementary.

In this paper, we propose Deformable Part-based Fully Convolutional Network (DP-
FCN), an end-to-end model integrating ideas from DPM into region-based deep ConvNets
for object detection, as an answer to the aforementioned issues. It learns a part-based rep-
resentation of objects and aligns these parts to enhance both classification and localization.
Training is done with box-level supervision only, i.e. without part annotation. It improves
upon existing object detectors with two key contributions.

The first one is the introduction of a new deformable part-based RoI pooling layer, which
explicitly selects discriminative elements of objects around region proposals by simultane-
ously optimizing latent displacements of all parts (middle of Fig. 1). Using a fixed box geom-
etry must be sub-optimal, especially when objects are not rigid and parts can move relative
to each others. Through alignment of parts, deformable part-based RoI pooling increases
the limited invariance to local transformations brought by pooling, which is beneficial for
classification.

Aligning parts also gives access to their configuration (i.e. their positions relative to each
others), which brings important geometric information about objects, e.g. their shapes, poses
or points of view. The second improvement is the design of a deformation-aware localization
module (right of Fig. 1), a specific module exploiting configuration information to refine
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localization. It improves bounding boxes regression by explicitly modeling displacements
of parts within the localization branch, in order to tightly fit boxes around objects.

By integrating previous ideas into Fully Convolutional Networks (FCNs) [5, 17] (left
of Fig. 1), we obtain state-of-the-art results on standard datasets PASCAL VOC 2007 and
2012 [7] with VOC data only. We show that those architectures are amenable to an effi-
cient computation of parts and their deformations, and offer natural solutions to keep spatial
resolution. The application of deformable part-based approaches is in particular severely
dependent on the availability of rather fine feature maps [15, 31, 36].

2 Related work

Region-based object detectors. Region-based deep ConvNets are currently the leading
approach in object detection. Since the seminal works of R-CNN [14] and Fast R-CNN [13],
most of object detectors exploit region proposals or directly learn to generate them [11, 28,
29]. Compared to sliding window approach, the use of region proposals allows the model to
focus computation on interesting areas of images and to balance positive and negative exam-
ples to ease learning. Other improvements are now commonly used, e.g. using intermediate
layers to refine feature maps [2, 18, 24, 41] or selecting interesting regions for building
mini-batches [5, 32].

Deformable Part-based Models. The core idea of DPM [8] is to represent each class
by a root filter describing whole appearances of objects and a set of part filters to finely
model local parts. Each part filter is assigned to an anchor point, defined relative from the
root, and move around during detection to model deformations of objects and best fit them.
A regularization is further introduced in the form of a deformation cost penalizing large
displacements. Each part is then optimizing a trade-off between maximizing detection score
and minimizing deformation cost. Final output combines scores from root and all parts.
Accurate localization is done with a post-processing step.

Several extensions have been proposed to DPM, e.g. using a second hierarchical level of
parts to finely describe objects [44], sharing part models between classes [27], learning from
strongly supervised annotations (i.e. at the part level) to get a better model [1], exploiting
segmentation clues to improve detection [9].

Part-based deep ConvNets. The first attempts to use deformable parts with deep Con-
vNets simply exploited deep features learned by an AlexNet [19] to use them with DPMs [15,
31, 36], but without region proposals. However tasks implying spatial predictions (e.g. detec-
tion, segmentation) require fine feature maps in order to have accurate localization [24]. The
fully connected layers were therefore discarded to keep enough spatial resolution, lowering
results. We solve this issue by using a FCN, well suited for these kinds of applications as it
naturally keeps spatial resolution. Thanks to several tricks easily integrable into FCNs (e.g.
dilated convolutions [3, 26, 39] or skip pooling [2, 18, 41]), FCNs have recently been suc-
cessful in various tasks, e.g. image classification [17, 38, 40], object detection [5], semantic
segmentation [21], weakly supervised learning [6].

[43] introduces parts for detection by learning part models and combining them with
geometric constraints for scoring. It is learned in a strongly supervised way, i.e. with part
annotations. Although manually defining parts can be more interpretable, it is likely sub-
optimal for detection as they might not correspond to most discriminative elements.
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Parts are often used for fine-grained recognition. [22] proposes a module for localizing
and aligning parts with respect to templates before classifying them, [34] finds part proposals
from activation maps and learns a graphical model to recognize objects, [42] uses two sub-
networks for detection and classification of parts, [33] considers parts as a vocabulary of
latent discriminative features decoupled from the task and learns them in an unsupervised
way. Usage of parts is also common in semantic segmentation, e.g. [4, 21, 37].

The work closest to ours is R-FCN [5], which also uses a FCN to achieve a great effi-
ciency. We improve upon it by learning more flexible representations than with fixed box
geometry. It allows our model to align parts of objects to bring invariance into classification
and to exploit geometric information from positions of parts to refine localization.

3 Deformable Part-based Fully Convolutional Networks

In this section, we present Deformable Part-based Fully Convolutional Network (DP-FCN),
a deep network for object detection. It represents regions with several parts that it aligns
by explicitly optimizing their positions. This alignment improves both classification and
localization: the part-based representations are more invariant to local transformations and
the configurations of parts give important information about the geometry of objects. This
idea can be inserted into most of state-of-the-art network architectures. The model is end-to-
end trainable without part annotation and adds a small computational overhead only.

The complete architecture is depicted in Fig. 1 and is composed of three main mod-
ules: (i) a Fully Convolutional Network (FCN) applied on whole images, (ii) a deformable
part-based RoI pooling layer, and (iii) two sibling prediction layers for classification and
localization. We now describe all three parts of our model in more details.

3.1 Fully convolutional feature extractor

Our model relies on a FCN (e.g. [17, 38, 40]) as backbone architecture, as this kind of
network enjoys several practical advantages, leading to several successful models, e.g. [5, 6,
21]. First, it allows to share most computation on whole images and to reduce per-RoI layers,
as noted in R-FCN [5]. Second and most important to our work, it directly provides feature
maps linked to the task at hand (e.g. detection heatmaps, as illustrated in the middle of Fig. 1
and on the left of Fig. 2) from which final predictions are simply pooled, as done in [5, 6].
Within DP-FCN, inferring the positions of parts for a region is done with a particular kind
of RoI pooling that we describe in Section 3.2.

The fully convolutional structure is therefore suitable for computing responses of all
parts for all classes as a single map for each of them. A corresponding structure is used for
localization. The complete representation for a whole image (classification and localization
maps for each part of each class) is obtained with a single forward pass and is shared between
all regions of the same image, which is very efficient.

Since relocalization of parts is done within feature maps, the resolution of those maps
is of practical importance. FCNs contain only spatial layers and are therefore well suited
for preserving spatial resolution, as opposed to networks ending with fully connected layers,
e.g. [19, 35]. Specifically, if the stride is too large, deformations of parts might be too coarse
to describe objects correctly. We reduce it by using dilated convolutions [3, 26, 39] on the
last convolution block and skip pooling [2, 18, 41] to combine the last three.
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Figure 2: Deformable part-based RoI pooling (left). Each input feature map corresponds
to a part of a class (or background). Positions of parts are optimized separately within de-
tection maps with deformation costs as regularization, and values are pooled within parts at
the new locations. Output includes a map for each class and the computed displacements
of parts, to be used for localization. Illustration of deformations (right). Parts are moved
from their initial positions to adapt to the shape of the object and better describe it.

3.2 Deformable part-based RoI pooling
The aim of this layer is to divide region proposals R into several parts and to locally relocal-
ize these to best match shapes of objects (see Fig. 2). Each part then models a discriminative
local element and is to be aligned at the corresponding location within the image. This de-
formable part-based representation is more invariant to transformations of objects because
the parts are positioned accordingly and their local appearances are stable [8]. This is espe-
cially useful for non-rigid objects, where a box-based representation must be sub-optimal.

The separation into parts is done with a regular grid of size k× k fitted to regions [5,
13]. Each cell (i, j) is then interpreted as a distinct part Ri, j. This strategy is simple yet
effective [36, 44]. Since the number of parts (i.e. k2) is fixed as a hyper-parameter, it is easy
to have a complete detection heatmap zi, j,c already computed for each region (i, j) of each
class c (left of Fig. 2). Parts then only need to be optimized within corresponding maps.

The deformation of parts draws ideas from the original DPM [8]: it allows parts to
slightly move around their reference positions (partitions of the initial regions), selects the
optimal latent displacements, and pools values from selected locations. The pooled score
pR

c (i, j) for part (i, j) and class c is a trade-off between maximizing the score on the feature
map and minimizing the displacement (dx,dy) from the reference position (see Fig. 2):

pR
c (i, j) = max

dx,dy

[
Pool

(x,y)∈Ri, j
zi, j,c(x+dx,y+dy)−λ

de f (dx2 +dy2)] (1)

where λ de f represents the strength of the regularization (small deformations), and Pool is an
average pooling as in [5], but any pooling function could be used instead. The deformation
cost is here the squared distance of the displacement on the feature map, but other functions
could be used equally. Implementation details can be found in Appendix A.1.

During training, deformations are optimized without part-level annotations. Displace-
ment computed during the forward pass are stored and used to backpropagate gradients at
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Figure 3: Deformation-aware localization refinement. Relocalizations of bounding boxes
obtained by averaging pooled values from localization maps (upper path) do not benefit
from deformable parts. To do so, displacements of parts are forwarded through two fully
connected layers (lower path) and are element-wise multiplied with previous output to refine
it, separately for each class. Localization is done with 4 values per class, following [13, 14].

the same locations. We further note that the deformations are computed for all parts and
classes independently. However, no deformation is computed for the background class: they
would not bring any relevant information as there is no discriminative element for this class.
The same displacements of parts are used to pool values from the localization maps.

λ de f is directly linked to the magnitudes of the displacements of parts, and therefore to
the deformations of RoIs too, by controlling the squared distance regularization (i.e. prefer-
ence for small deformations). Increasing it puts a higher weight on the regularization and
effectively reduces displacements of parts, but setting it too high prevents parts from moving
and removes the benefits of our approach. It is noticeable this deformable part-based RoI
pooling is a generalization of position-sensitive RoI pooling from [5]. Setting λ de f = +∞

clamps dx and dy to 0, leading to the formulation of position-sensitive RoI pooling:

pR
c (i, j) = Pool

(x,y)∈Ri, j
zi, j,c(x,y). (2)

On the other hand, setting λ de f = 0 removes regularization and parts are then free to move.
With λ de f too low, the results decrease, indicating that regularization is practically important.
However the results appeared to be stable within a large range of values of λ de f .

3.3 Classification and localization predictions with deformable parts
Predictions are performed with two sibling branches for classification and relocalization
of region proposals as is common practice [13]. The classification branch is simply com-
posed of an average pooling followed by a SoftMax layer. This is the strategy employed in
R-FCN [5], however the deformations introduced before (with deformable part-based RoI
pooling) bring more invariance to transformations of objects and boost classification.

Regarding localization, we also use an average pooling to compute a first localization
output from corresponding features. However, the configuration of parts (i.e. their positions
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relative to each others) is obtained as a by-product of the alignment of parts performed be-
fore. It gives rich geometric information about the appearances of objects, e.g. their shapes
or poses, that can be used to enhance localization accuracy.

To that end we introduce a new deformation-aware localization refinement module (see
Fig. 3). For each region R, we extract the feature vector dR

c of displacements (dx,dy) for all
parts of class c (as shown on Fig. 2) and use it to refine previous output for the same class.
dR

c is forwarded through two fully connected layers and is then element-wise multiplied with
the first values to yield the final localization output for this class. Since refinement is mainly
geometric, it is done for all classes separately and parameters are shared between classes.

4 Experiments

4.1 Ablation study

Experimental setup. We perform this analysis with the fully convolutional backbone ar-
chitecture ResNet-50 [17] and exploit the region proposals computed by AttractioNet [11,
12] released by the authors. We use k× k = 7× 7 parts, as advised by the authors of R-
FCN [5]. Setting of all others hyper-parameters can be found in Appendix B.1.

All experiments in this section are conducted on the PASCAL VOC 07+12 dataset [7]:
training is done on the union of the 2007 and 2012 trainval sets and testing on the 2007 test
set. In addition to the standard mAP@0.5 (i.e. PASCAL VOC style) metric, results are also
reported with the mAP@0.75 and mAP@[0.5:0.05:0.95] (i.e. MS COCO style) metrics to
thoroughly evaluate the effects of proposed improvements.

Comparison with R-FCN. Performances of our implementation of R-FCN [5] with the
given setup are shown in the first row of Tab. 1. Adding the deformable part-based RoI pool-
ing to R-FCN (second row of Tab. 1) improves mAP@0.5 by 2.1 points. Indeed, this metric
is rather permissive so the localization does not need to be very accurate: we see that the
gain on mAP@0.75 is much smaller. The improvements are therefore mainly due to a better
recognition, thus validating the role of deformable parts. With the localization refinement
module (third row of Tab. 1), the mAP@0.5 has only a small improvement, because local-
ization accuracy is not a issue. However, it further improves mAP@0.75 by 2.1 points (i.e.
2.6 points with respects to R-FCN), validating the need for such a module. This confirms
that aligning parts brings geometric information useful for localization.

Model Deformations
Localization
refinement

mAP@
0.5

mAP@
0.75

mAP@
[0.5:0.95]

R-FCN 73.7 38.3 39.8
X 75.8 38.8 40.4

DP-FCN X X 76.1 40.9 41.3

Table 1: Ablation study of DP-FCN on PASCAL VOC 2007 test in average precision (%).
Without deformable part-based RoI pooling nor localization refinement module, it is equiv-
alent to R-FCN (the reported results are those of our implementation with the given setup).
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Figure 4: Precision-recall curves for R-FCN (left) and DP-FCN (right). Detailed analysis
of false positives on unseen VOC07 test images averaged over all categories.

Figure 5: Example detections of R-FCN (red) and DP-FCN (green). DP-FCN tightly fits
objects (first row) and separates close instances (second row) better than R-FCN.

Detailed breakdowns of false positives are provided in Fig. 4 for R-FCN and DP-FCN.1

We see that the biggest gain comes from reduced localization errors (C75 and C50 metrics),
and the corresponding curves are higher for DP-FCN. Ignoring those errors, recognition
accuracy is consistently around 1 point better (Loc and Oth metrics). However, both models
roughly keep the same number of false negatives (BG metric).

Examples of detection outputs are illustrated in Fig. 5 to visually evaluate proposed im-
provements. It appears that R-FCN can more easily miss extremal parts of objects (see first
row, e.g. the right wing of the plane) and that DP-FCN is better at separating close instances
(see second row, e.g. the two sheep one behind the other), thanks to deformable parts.

Interpretation of parts. As in the original DPM [8], the semantics of parts is not explicit
in our model. Part positions are instead automatically learned to optimize detection perfor-

1See http://mscoco.org/dataset/#detections-eval for full details of metrics.
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Figure 6: Examples of deformations of parts. Initial region proposals are shown in yellow
and deformed parts in red. Only 3×3 parts are displayed for clarity.

mances, in a weakly supervised manner. Therefore the interpretation in terms of semantic
parts is not systematic, especially because our division of regions into parts is finer than in
DPM, leading to smaller part areas. Some deformed parts are displayed on Fig. 6 with a
3× 3 part division for easier visualization. It is noticeable that DP-FCN is able to better fit
to objects with deformable parts than with simple bounding boxes.

Network architecture. We compare DP-FCN with several FCN backbone architectures in
Tab. 2, in particular the 50- and 101-layer versions of ResNet [17], Wide ResNet [40] and
ResNeXt [38]. We see that the detection mAP of DP-FCN can be significantly increased by
using better networks. ResNeXt-101 (64x4d) gives the best results among the tested ones,
with large improvements in all metrics, despite not using dilated convolutions.

FCN architecture for DP-FCN mAP@0.5 mAP@0.75 mAP@[0.5:0.95]

ResNet-50 [17] 76.1 40.9 41.3
ResNeXt-50 (32x4d) [38]? 76.3 40.8 41.4
Wide ResNet-50-2 [40] 77.9 43.3 42.9
ResNet-101 [17] 78.1 44.2 43.6
ResNeXt-101 (32x4d) [38]? 78.6 45.2 44.4
ResNeXt-101 (64x4d) [38]? 79.5 47.8 45.7

Table 2: Comparison of DP-FCN with different FCN architectures on PASCAL VOC
2007 test in average precision (%). Entries marked with ? do not use dilated convolutions.

4.2 PASCAL VOC results

Experimental setup. We bring the following improvements to the setup of Section 4.1, the
details of which are in Appendix B.2: we use ResNeXt-101 (64x4d) [38] and increase the
number of iterations. We include common tricks: color data augmentations [19], bounding
box voting [10], and averaging of detections between original and flipped images [2, 41]. We
set the relative weight of the multi-task (classification/localization) loss [13] to 7 and enlarge
input boxes by a factor 1.3 to include some context.
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Method mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

FRCN [13] 70.0 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4
HyperNet [18] 76.3 77.4 83.3 75.0 69.1 62.4 83.1 87.4 87.4 57.1 79.8 71.4 85.1 85.1 80.0 79.1 51.2 79.1 75.7 80.9 76.5
Faster R-CNN [29] 76.4 79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 88.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72.0
SSD [25] 76.8 82.4 84.7 78.4 73.8 53.2 86.2 87.5 86.0 57.8 83.1 70.2 84.9 85.2 83.9 79.7 50.3 77.9 73.9 82.5 75.3
MR-CNN [10] 78.2 80.3 84.1 78.5 70.8 68.5 88.0 85.9 87.8 60.3 85.2 73.7 87.2 86.5 85.0 76.4 48.5 76.3 75.5 85.0 81.0
LocNet [12] 78.4 80.4 85.5 77.6 72.9 62.2 86.8 87.5 88.6 61.3 86.0 73.9 86.1 87.0 82.6 79.1 51.7 79.4 75.2 86.6 77.7
FRCN OHEM [32] 78.9 80.6 85.7 79.8 69.9 60.8 88.3 87.9 89.6 59.7 85.1 76.5 87.1 87.3 82.4 78.8 53.7 80.5 78.7 84.5 80.7
ION [2] 79.4 82.5 86.2 79.9 71.3 67.2 88.6 87.5 88.7 60.8 84.7 72.3 87.6 87.7 83.6 82.1 53.8 81.9 74.9 85.8 81.2
R-FCN [5] 80.5 79.9 87.2 81.5 72.0 69.8 86.8 88.5 89.8 67.0 88.1 74.5 89.8 90.6 79.9 81.2 53.7 81.8 81.5 85.9 79.9
DP-FCN [ours] 83.1 89.8 88.6 85.2 73.9 74.7 92.1 90.4 94.4 58.3 84.9 75.2 93.4 93.1 87.4 85.9 53.9 85.3 80.0 90.4 85.9

Table 3: Detailed detection results on PASCAL VOC 2007 test in average precision (%).
For fair comparisons, the table only includes methods trained on PASCAL VOC 07+12.

Method mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

FRCN [13] 68.4 82.3 78.4 70.8 52.3 38.7 77.8 71.6 89.3 44.2 73.0 55.0 87.5 80.5 80.8 72.0 35.1 68.3 65.7 80.4 64.2
HyperNet [18] 71.4 84.2 78.5 73.6 55.6 53.7 78.7 79.8 87.7 49.6 74.9 52.1 86.0 81.7 83.3 81.8 48.6 73.5 59.4 79.9 65.7
Faster R-CNN [29] 73.8 86.5 81.6 77.2 58.0 51.0 78.6 76.6 93.2 48.6 80.4 59.0 92.1 85.3 84.8 80.7 48.1 77.3 66.5 84.7 65.6
SSD [25] 74.9 87.4 82.3 75.8 59.0 52.6 81.7 81.5 90.0 55.4 79.0 59.8 88.4 84.3 84.7 83.3 50.2 78.0 66.3 86.3 72.0
FRCN OHEM [32] 76.3 86.3 85.0 77.0 60.9 59.3 81.9 81.1 91.9 55.8 80.6 63.0 90.8 85.1 85.3 80.7 54.9 78.3 70.8 82.8 74.9
ION [2] 76.4 88.0 84.6 77.7 63.7 63.6 80.8 80.8 90.9 55.5 81.9 60.9 89.1 84.9 84.2 83.9 53.2 79.8 67.4 84.4 72.9
R-FCN [5] 77.6 86.9 83.4 81.5 63.8 62.4 81.6 81.1 93.1 58.0 83.8 60.8 92.7 86.0 84.6 84.4 59.0 80.8 68.6 86.1 72.9
DP-FCN [ours]2 80.9 89.3 84.2 85.4 74.4 70.0 84.0 86.2 93.9 62.9 85.1 62.7 92.7 87.4 86.0 86.8 61.3 85.1 74.8 88.2 78.5

Table 4: Detailed detection results on PASCAL VOC 2012 test in average precision (%).
For fair comparisons, the table only includes methods trained on PASCAL VOC 07++12.

PASCAL VOC 2007 and 2012. Results of DP-FCN along with those of recent methods
are reported in Tab. 3 for VOC 2007 and in Tab. 4 for VOC 2012. For fair comparisons
we only report results of methods trained on VOC07+12 and VOC07++12 respectively, but
using additional data, e.g. COCO images, usually improves results [5, 17]. DP-FCN achieves
83.1% and 80.9% on these two datasets, yielding large gaps with all competing methods. In
particular, DP-FCN outperforms R-FCN [5], the work closest to ours, by significant margins
(2.6% and 3.3% respectively). We note that these results could be further improved with
additional common enhancements, e.g. multi-scale training and testing [16] or OHEM [32].

5 Conclusion

In this paper, we propose DP-FCN, a new deep model for object detection. While tradi-
tional region-based detectors use generic bounding boxes to extract features from, DP-FCN
is more flexible and focuses on discriminative elements to align them. It learns a part-based
representation of objects in an efficient way with a natural integration into FCNs and with-
out any additional annotations during training. This improves both recognition by building
invariance to local transformations, and localization thanks to a dedicated module explicitly
leveraging computed positions of parts to refine predictions with geometric information. Ex-
perimental validation shows significant gains on several common metrics. As a future work,
we will test our model on a larger-scale dataset, such as MS COCO [23].

2http://host.robots.ox.ac.uk:8080/anonymous/QNUYVS.html
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A Implementation details

A.1 Deformable part-based RoI pooling layer
We normalize the displacements (dx,dy) by the widths and heights of parts to make the layer
invariant to the scales of the images. We also normalize the classification feature maps before
forwarding them to deformable part-based RoI pooling layer to ensure classification and
regularization terms are comparable. We do this by L2-normalizing at each spatial location
the block of C+1 maps for each part separately, i.e. replacing z from Eq. (1) with

z̄i, j,c(x,y) =
zi, j,c(x,y)√

∑c′ zi, j,c′(x,y)2
. (3)

Optimization of (dx,dy) is performed by brute force in limited ranges and not whole images.
With λ de f (Eq. (1)) not too small, the regularization effectively restricts values of the dis-
placements, leaving the results of pooling unchanged. In all experiments, we use λ de f = 0.3.

A.2 Deformation-aware localization refinement
The localization module is applied for each class separately and takes the normalized dis-
placements dR

c of a class as input, of size 2k2 (i.e. a 2D displacement for each part). It is
composed of two fully connected layers with a ReLU between them. The size of the first
layer is set to 256 in all our experiments. The output from average pooling (upper path in
Fig. 3) is the main outcome and is obtained from the visual features only without consider-
ing deformations. The one from the fully connected layers (lower path in Fig. 3) encodes the
positions of parts, and is merged with the first with an element-wise product (both are of size
4 for each class) to adjust it accordingly to the exact locations where it was computed.

B Experimental setups

B.1 Ablation study
We use the fully convolutional backbone architecture ResNet-50 [17] whose model pre-
trained on ImageNet is freely available. The network is trained with SGD for 60,000 iter-
ations with a learning rate of 5 · 10−4 and for 20,000 further iterations with 5 · 10−5. The
momentum parameter is set to 0.9 and the weight decay to 10−4. Each mini-batch is com-
posed of 64 regions from a single image at the scale of 600 px, selected according to Fast
R-CNN [13]. Horizontal flipping of images with probability 0.5 is used as data augmenta-
tion. We exploit the region proposals computed by AttractioNet [11, 12], released by the
authors. The top 2,000 regions are used for learning and the top 300 are evaluated during
inference. We use k×k = 7×7 parts, as advised by the authors of R-FCN [5]. As is common
practice, detections are post-processed with NMS.

B.2 PASCAL VOC results
Changes with respect to the previous setup include replacing ResNet-50 by ResNeXt-101
(64x4d) [38], increasing the number of iterations to 120,000 and 160,000 with the same
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learning rates, using 2 images per mini-batch with the same number of regions per image.
We also include common tricks as described in the main paper.

C Examples of detections with DP-FCN
Below are some example detections (using VOC color code) on unseen VOC 2007 test im-
ages, from the final DP-FCN model trained on VOC 07+12 data (Section 4.2).
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