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Abstract

Leveraging physical knowledge described by partial dif-
ferential equations (PDEs) is an appealing way to improve
unsupervised video prediction methods. Since physics is too
restrictive for describing the full visual content of generic
videos, we introduce PhyDNet, a two-branch deep archi-
tecture, which explicitly disentangles PDE dynamics from
unknown complementary information. A second contribu-
tion is to propose a new recurrent physical cell (PhyCell),
inspired from data assimilation techniques, for performing
PDE-constrained prediction in latent space. Extensive ex-
periments conducted on four various datasets show the abil-
ity of PhyDNet to outperform state-of-the-art methods. Ab-
lation studies also highlight the important gain brought out
by both disentanglement and PDE-constrained prediction.
Finally, we show that PhyDNet presents interesting features
for dealing with missing data and long-term forecasting.

1. Introduction

Video forecasting consists in predicting the future con-
tent of a video conditioned on previous frames. This is
of crucial importance in various contexts, such as weather
forecasting [73], autonomous driving [29], reinforcement
learning [43], robotics [16], or action recognition [33].
In this work, we focus on unsupervised video prediction,
where the absence of semantic labels to drive predictions
exacerbates the challenges of the task. In this context, a
key problem is to design video prediction methods able to
represent the complex dynamics underlying raw data.

State-of-the-art methods for training such complex dy-
namical models currently rely on deep learning, with
specific architectural choices based on 2D/3D convolu-
tional [40, 62] or recurrent neural networks [66, 64, 67].

To improve predictions, recent methods use adversarial
training [40, 62, 29], stochastic models [7, 41], constraint
predictions by using geometric knowledge [16, 24, 75] or
by disentangling factors of variation [60, 58, 12, 21].

Figure 1. PhyDNet is a deep model mapping an input video into a
latent space H, from which future frame prediction can be accu-
rately performed. PhyDNet learns H in an unsupervised manner,
such that physical dynamics and unknown factors necessary for
prediction, e.g. appearance, details, texture, are disentangled.

Another appealing way to model the video dynamics is
to exploit prior physical knowledge, e.g. formalized by par-
tial differential equations (PDEs) [11, 55]. Recently, in-
teresting connections between residual networks and PDEs
have been drawn [71, 37, 8], enabling to design physically-
constrained machine learning frameworks [48, 11, 55, 52].
These approaches are very successful for modeling com-
plex natural phenomena, e.g. climate, when the underlying
dynamics is well described by the physical equations in the
input space [48, 52, 35]. However, such assumption is rarely
fulfilled in the pixel space for predicting generalist videos.

In this work, we introduce PhyDNet, a deep model ded-
icated to perform accurate future frame predictions from
generalist videos. In such a context, physical laws do not
apply in the input pixel space ; the goal of PhyDNet is to
learn a semantic latent space H in which they do, and are
disentangled from other factors of variation required to per-
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form future prediction. Prediction results of PhyDNet when
trained on Moving MNIST [56] are shown in Figure 1. The
left branch represents the physical dynamics in H ; when
decoded in the image space, we can see that the correspond-
ing features encode approximate segmentation masks pre-
dicting digit positions on subsequent frames. On the other
hand, the right branch extracts residual information required
for prediction, here the precise appearance of the two digits.
Combining both representations eventually makes accurate
prediction successful.

Our contributions to the unsupervised video prediction
problem with PhyDNet can be summarized as follows:

• We introduce a global sequence to sequence two-
branch deep model (section 3.1) dedicated to jointly
learn the latent space H and to disentangle physical
dynamics from residual information, the latter being
modeled by a data-driven (ConvLSTM [73]) method.

• Physical dynamics is modeled by a new recurrent
physical cell, PhyCell (section 3.2), discretizing a
broad class of PDEs in H. PhyCell is based on a
prediction-correction paradigm inspired from the data
assimilation community [1], enabling robust training
with missing data and for long-term forecasting.

• Experiments (section 4) reveal that PhyDNet out-
performs state-of-the-art methods on four generalist
datasets: this is, as far as we know, the first physically-
constrained model able to show such capabilities. We
highlight the importance of both disentanglement and
physical prediction for optimal performances.

2. Related work
We review here related multi-step video prediction ap-

proaches dedicated to long-term forecasting. We also focus
on unsupervised training, i.e. only using input video data
and without manual supervision based on semantic labels.

Deep video prediction Deep neural networks have re-
cently achieved state-of-the-art performances for data-
driven video prediction. Seminal works include the applica-
tion of sequence to sequence LSTM or Convolutional vari-
ants [56, 73], adopted in many studies [16, 36, 74]. Further
works explore different architectural designs based on Re-
current Neural Networks (RNNs) [66, 64, 44, 67, 65] and
2D/3D ConvNets [40, 62, 50, 6]. Dedicated loss functions
[10, 30] and Generative Adversarial Networks (GANs) have
been investigated for sharper predictions [40, 62, 29]. How-
ever, the problem of conditioning GANs with prior informa-
tion, such as physical models, remains an open question.

To constrain the challenging generation of high dimen-
sional images, several methods rather predict geometric
transformations between frames [16, 24, 75] or use opti-
cal flow [46, 38, 33, 32, 31]. This is very effective for

short-term prediction, but degrades quickly when the video
content evolves, where more complex models and memory
about dynamics are required.

A promising line of work consists in disentangling inde-
pendent factors of variations in order to apply the prediction
model on lower-dimensional representations. A few ap-
proaches explicitly model interactions between objects in-
ferred from an observed scene [14, 27, 76]. Relational rea-
soning, often implemented with graphs [2, 26, 53, 45, 59],
can account for basic physical laws, e.g. drift, gravity,
spring [70, 72, 42]. However, these methods are object-
centric, only evaluate on controlled settings and are not
suited for general real-world video forecasting. Other dis-
entangling approaches factorize the video into independent
components [60, 58, 12, 21, 19]. Several disentanglement
criteria are used, such as content/motion [60] or determinis-
tic/stochastic [12]. In specific contexts, the prediction space
can be structured using additional information, e.g. with hu-
man pose [61, 63] or key points [41], which imposes a se-
vere overhead on the annotation budget.

Physics and PDEs Exploiting prior physical knowledge
is another appealing way to improve prediction models.
Earlier attempts for data-driven PDE discovery include
sparse regression of potential differential terms [5, 52,
54] or neural networks approximating the solution and
response function of PDEs [49, 48, 55]. Several ap-
proaches are dedicated to a specific PDE, e.g. advection-
diffusion in [11]. Based on the connection between numeri-
cal schemes for solving PDEs (e.g. Euler, Runge-Kutta) and
residual neural networks [71, 37, 8, 78], several specific ar-
chitectures were designed for predicting and identifying dy-
namical systems [15, 35, 47]. PDE-Net [35, 34] discretizes
a broad class of PDEs by approximating partial derivatives
with convolutions. Although these works leverage physi-
cal knowledge, they either suppose physics behind data to
be explicitly known or are limited to a fully visible state,
which is rarely the case for general video forecasting.

Deep Kalman filters To handle unobserved phenomena,
state space models, in particular the Kalman filter [25],
have been recently integrated with deep learning, by mod-
eling dynamics in learned latent space [28, 69, 20, 17, 3].
The Kalman variational autoencoder [17] separates state es-
timation in videos from dynamics with a linear gaussian
state space model. The Recurrent Kalman Network [3]
uses a factorized high dimensional latent space in which
the linear Kalman updates are simplified and don’t require
computationally-heavy covariance matrix inversions. These
methods inspired by the data assimilation community [1, 4]
have advantages in missing data or long-term forecasting
contexts due to their mechanisms decoupling latent dynam-
ics and input assimilation. However, they assume simple la-
tent dynamics (linear) and don’t include any physical prior.



(a) PhyDNet disentangling recurrent bloc (b) Global seq2seq architecture

Figure 2. Proposed PhyDNet deep model for video forecasting. a) The core of PhyDNet is a recurrent block projecting input images ut

into a latent space H, where two recurrent neural networks disentangle physical dynamics (PhyCell, section 3.2) from residual information
(ConvLSTM). Learned physical hp

t+1 and residual hr
t+1 representations are summed before decoding to predict the future image ût+1.

b) Unfolded in time, PhyDNet forms a sequence to sequence (seq2seq) architecture suited for multi-step video prediction. Dotted arrows
mean that predictions are reinjected as next input only for the ConvLSTM branch, and not for PhyCell, as explained in section 3.3.

3. PhyDNet model for video forecasting
We introduce PhyDNet, a model dedicated to video pre-

diction, which leverages physical knowledge on dynamics,
and disentangles it from other unknown factors of variations
necessary for accurate forecasting. To achieve this goal, we
introduce a disentangling architecture (section 3.1), and a
new physically-constrained recurrent cell (section 3.2).

Problem statement As discussed in introduction, physical
laws do not apply at the pixel level for general video predic-
tion tasks. However, we assume that there exists a concep-
tual latent space H in which physical dynamics and residual
factors are linearly disentangled. Formally, let us denote as
u = u(t,x) the frame of a video sequence at time t, for
spatial coordinates x = (x, y). h(t,x) ∈ H is the latent
representation of the video up to time t, which decomposes
as h = hp + hr, where hp (resp. hr) represents the physi-
cal (resp. residual) component of the disentanglement. The
video evolution in the latent space H is thus governed by
the following partial differential equation (PDE):

∂h(t,x)

∂t
=
∂hp

∂t
+
∂hr

∂t
:=Mp(hp,u) + Mr(hr,u) (1)

Mp(hp,u) and Mr(hr,u) represent physical and
residual dynamics in the latent space H.

3.1. PhyDNet disentangling architecture

The main goal of PhyDNet is to learn the mapping from
input sequences to a latent space which approximates the

disentangling properties formalized in Eq (1).
To reach this objective, we introduce a recurrent bloc

which is shown in Figure 2(a). A video frame ut at time
t is mapped by a deep convolutional encoder E into a latent
space representing the targeted space H. E(ut) is then used
as input for two parallel recurrent neural networks, incorpo-
rating this spatial representation into a dynamical model.

The left branch in Figure 2(a) models the latent repre-
sentation hp fulfilling the physical part of the PDE in Eq
(1), i.e. ∂hp(t,x)

∂t = Mp(hp,u). This PDE is modeled by
our recurrent physical cell described in section 3.2, PhyCell,
which leads to the computation of hp

t+1 from E(ut) and hp
t .

From the machine learning perspective, PhyCell leverages
physical constraints to limit the number of model parame-
ters, regularizes training and improves generalization.

The right branch in Figure 2(a) models the latent repre-
sentation hr fulfilling the residual part of the PDE in Eq (1),
i.e. ∂hr(t,x)

∂t = Mr(hr,u). Inspired by wavelet decompo-
sition [39] and recent semi-supervised works [51], this part
of the PDE corresponds to unknown phenomena, which do
not correspond to any prior model, and is therefore entirely
learned from data. We use a generic recurrent neural net-
work for this task, e.g. ConvLSTM [73] for videos, which
computes hr

t+1 from E(ut) and hr
t .

ht+1 = hp
t+1 +hr

t+1 is the combined representation pro-
cessed by a deep decoder D to forecast the image ût+1.

Figure 2(b) shows the "unfolded" PhyDNet. An input
video u1:T = (u1, ...,uT ) ∈ RT×n×m×c with spatial size



n × m and c channels is projected into H by the encoder
E and processed by the recurrent block unfolded in time.
This forms a Sequence To Sequence architecture [57] suited
for multi-step prediction, outputting ∆ future frame predic-
tions ûT+1:T+∆. Encoder, decoder and recurrent block pa-
rameters are all trained end-to-end, meaning that PhyDNet
learns itself without supervision the latent space H in which
physics and residual factors are disentangled.

3.2. PhyCell: a deep recurrent physical model

PhyCell is a new physical cell, whose dynamics is gov-
erned by the PDE response function Mp(hp,u)1:

Mp(h,u) := Φ(h) + C(h,u) (2)

where Φ(h) is a physical predictor modeling only the latent
dynamics and C(h,u) is a correction term modeling the
interactions between latent state and input data.

Physical predictor: Φ(h) in Eq (2) is modeled as follows:

Φ(h(t,x)) =
∑

i,j:i+j≤q

ci,j
∂i+jh

∂xi∂yj
(t,x) (3)

Φ(h(t,x)) in Eq (3) combines the spatial derivatives with
coefficients ci,j up to a certain differential order q. This
generic class of linear PDEs subsumes a wide range of clas-
sical physical models, e.g. the heat equation, the wave equa-
tions, the advection-diffusion equations.

Correction: C(h,u) in Eq (2) takes the following form:

C(h,u) :=K(t,x)�[E(u(t,x))−(h(t,x)+Φ(h(t,x))] (4)

Eq (4) computes is the difference between the latent state af-
ter physical motion h(t,x) + Φ(h(t,x)) and the embedded
new observed input E(u(t,x)). K(t,x) is a gating factor,
where � is the Hadamard product.

3.2.1 Discrete PhyCell

We discretize the continuous time PDE in Eq (2) with the
standard forward Euler numerical scheme [37], leading to
the discrete time PhyCell (derivation in supplementary 1.1):

ht+1 = (1−Kt)� (ht + Φ(ht)) + Kt �E(ut) (5)

Depicted in Figure 3, PhyCell is an atomic recurrent cell for
building physically-constrained RNNs. In our experiments,
we use one layer of PhyCell but one can also easily stack
several PhyCell layers to build more complex models, as
done for stacked RNNs [66, 64, 67]. To gain insight into
PhyCell in Eq (5), we write the equivalent two-steps form:h̃t+1 = ht + Φ(ht) Prediction

ht+1 = h̃t+1 + Kt �
(
E(ut)− h̃t+1

)
Correction

(6)

(7)

1In the sequel, we drop the index p in hp for the sake of simplicity

Figure 3. PhyCell recurrent cell implements a two-steps scheme:
physical prediction with convolutions for approximating and com-
bining spatial derivatives (Eq (6) and Eq (3)), and input assimi-
lation as a correction of latent physical dynamics driven by ob-
served data (Eq (7)). During training, the filter moment loss in
red (Eq (10)) enforces the convolutional filters to approximate the
desired differential operators.

The prediction step in Eq (6) is a physically-constrained
motion in the latent space, computing the intermediate rep-
resentation h̃t+1. Eq (7) is a correction step incorporat-
ing input data. This prediction-correction formulation is
reminiscent of the way to combine numerical models with
observed data in the data assimilation community [1, 4],
e.g. with the Kalman filter [25]. We show in section 3.3 that
this decoupling between prediction and correction can be
leveraged to robustly train our model in long-term forecast-
ing and missing data contexts. Kt can be interpreted as the
Kalman gain controlling the trade-off between both steps.

3.2.2 PhyCell implementation

We now specify how the physical predictor Φ in Eq (6) and
the correction Kalman gain Kt in Eq (7) are implemented.

Physical predictor: we implement Φ using a convolutional
neural network (left gray box in Figure 3), based on the con-
nection between convolutions and differentiations [13, 35].
This offers the possibility to learn a class of filters approx-
imating each partial derivative in Eq (3), which are con-
strained by a kernel moment loss, as detailed in section 3.3.
As noted by [35], the flexibility added by this constrained
learning strategy gives better results for solving PDEs than
handcrafted derivative filters. Finally, we use 1 × 1 convo-
lutions to linearly combine these derivatives with ci,j coef-
ficients in Eq (3).

Kalman gain: We approximate Kt in Eq (7) by a gate with
learned convolution kernels Wh, Wu and bias bk:

Kt = tanh
(
Wh ∗ h̃t+1 + Wu ∗E(ut) + bk

)
(8)



Note that if Kt = 0, the input is not accounted for and
the dynamics follows the physical predictor ; if Kt = 1,
the latent dynamics is resetted and only driven by the input.
This is similar to gating mechanisms in LSTMs or GRUs.

Discussion: With specific Φ predictor, Kt gain and encoder
E, PhyCell recovers recent models from the literature:

model Φ Kt E
PDE-Net [34] Eq (6) 0 Id

Advection-diffusion advection-diffusion 0 Id
flow [11] predictor
RKF [3] locally linear, no approx. deep encoder

phys. constraint Kalman gain
PhyDNet (ours) Eq (6) Eq (8) deep encoder

PDE-Net [35] directly works on raw pixel data (iden-
tity encoder E) and assumes Markovian dynamics (no cor-
rection, Kt=0): the model solves the autonomous PDE
∂u
∂t = Φ(u) given in Eq (6) but in pixel space. This prevents
from modeling time-varying PDEs such as those tackled in
this work, e.g. varying advection terms. The flow model
in [11] uses the closed-form solution of the advection-
diffusion equation as predictor ; it is however limited only
to this PDE, whereas PhyDNet models a much broader class
of PDEs. The Recurent Kalman Filter (RKF) [3] also pro-
poses a prediction-correction scheme in a deep latent space,
but their approach does not include any prior physical in-
formation, and the prediction step is locally linear, whereas
we use deep models. An approximated form of the covari-
ance matrix is used for estimating Kt in [3], which we find
experimentally inferior to our gating mechanism in Eq (8).

3.3. Training

Given a training set of N videos D =
{
u(i)

}
i={1:N}

and PhyDNet parameters w = (wp,wr,ws), where wp

(resp. wr) are parameters of the PhyCell (resp. residual)
branch, and ws are encoder and decoder shared parameters,
we minimize the following objective function:

L(D,w) = Limage(D,w) + λLmoment(wp) (9)

We use the L2 loss for the image reconstruction loss Limage,
as commonly done in the literature [66, 64, 44, 65, 67].

Lmoment(wp) imposes physical constraints on the k2

learned filters
{
wk

p,i,j

}
i,j≤k, such that each wk

p,i,j of size

k × k approximates ∂i+j

∂xiyj . This is achieved by using a loss
based on the moment matrix M(wk

p,i,j) [34], representing
the order of the filter differentiation [13]. M(wk

p,i,j) is com-
pared to a target moment matrix ∆k

i,j (see M and ∆ com-
putations in supplementary 1.2), leading to:

Lmoment =
∑
i≤k

∑
j≤k

||M(wk
p,i,j)−∆k

i,j ||F (10)

Prediction mode An appealing feature of PhyCell is
that we can use and train the model in a "prediction-only"
mode by setting Kt = 0 in Eq (7), i.e. by only relying on
the physical predictor Φ in Eq (6). It is worth mentioning
that the "prediction-only" mode is not applicable to stan-
dard Seq2Seq RNNs: although the decomposition in Eq (2)
still holds, i.e. Mr(h,u) = Φ(h) + C(h,u), the result-
ing predictor is naive and useless for multi-step prediction
h̃t+1 = 0, see supplementary 1.3).

Therefore, standard RNNs are not equipped to deal with
unreliable input data ut. We show in section 4.4 that the
gain of PhyDNet over those models increases in two impor-
tant contexts with unreliable inputs: multi-step prediction
and dealing with missing data.

4. Experiments
4.1. Experimental setup

Datasets We evaluate PhyDNet on four datasets from
various origins. Moving MNIST [56] is a standard syn-
thetic benchmark in video prediction with two random dig-
its bouncing on the walls. Traffic BJ [77] represents com-
plex real-world traffic flows, which requires modeling trans-
port phenomena and traffic diffusion for prediction. SST
(Sea Surface Temperature) [11] consists in meteorological
data, whose evolution is governed by the physical laws of
fluid dynamics. Finally, Human 3.6 [22] represents general
human actions with complex 3D articulated motions. We
give details about all datasets in supplementary 2.1.

Moving MNIST Traffic BJ Sea Surface Temperature Human 3.6
Method MSE MAE SSIM MSE ×100 MAE SSIM MSE ×10 MAE SSIM MSE / 10 MAE /100 SSIM
ConvLSTM [73] 103.3 182.9 0.707 48.5∗ 17.7∗ 0.978∗ 45.6∗ 63.1∗ 0.949∗ 50.4∗ 18.9∗ 0.776∗

PredRNN [66] 56.8 126.1 0.867 46.4 17.1∗ 0.971∗ 41.9 62.1 0.955 48.4 18.9 0.781
Causal LSTM [64] 46.5 106.8 0.898 44.8 16.9∗ 0.977∗ 39.1∗ 62.3∗ 0.929∗ 45.8 17.2 0.851
MIM [67] 44.2 101.1 0.910 42.9 16.6∗ 0.971∗ 42.1∗ 60.8∗ 0.955∗ 42.9 17.8 0.790
E3D-LSTM [65] 41.3 86.4 0.920 43.2∗ 16.9∗ 0.979∗ 34.7∗ 59.1∗ 0.969∗ 46.4 16.6 0.869
Advection-diffusion [11] - - - - - - 34.1∗ 54.1∗ 0.966∗ - - -
DDPAE [21] 38.9 90.7∗ 0.922∗ - - - - - - - - -
PhyDNet 24.4 70.3 0.947 41.9 16.2 0.982 31.9 53.3 0.972 36.9 16.2 0.901

Table 1. Quantitative forecasting results of PhyDNet compared to baselines using various datasets. Numbers are copied from original or
citing papers. * corresponds to results obtained by running online code from the authors. The first five baseline are general deep models
applicable to all datasets, whereas DDPAE [21] (resp. advection-diffusion flow [11]) are specific state-of-the-art models for Moving
MNIST (resp. SST). Metrics are scaled to be in a similar range across datasets to ease comparison.



Figure 4. Qualitative results of the predicted frames by PhyDNet for all datasets. First line is the input sequence, second line the target
and third line PhyDNet prediction. For Moving MNIST, we add a fourth line with the comparison to DDPAE [21] and for Traffic BJ the
difference |Prediction-Target| for better visualization.

Network architectures and training PhyDNet shares a
common backbone architecture for all datasets where the
physical branch contains 49 PhyCells (7 × 7 kernel filters)
and the residual branch is composed of a 3-layers ConvL-
STM with 128 filters in each layer. We set up the trade-
off parameter between Limage and Lmoment to λ = 1. De-
tailed architectures and λ impact are given in supplementary
2.2. Our code is available at https://github.com/
vincent-leguen/PhyDNet.

Evaluation metrics We follow evaluation metrics com-
monly used in state-of-the-art video prediction methods: the
Mean Squared Error (MSE), Mean Absolute Error (MAE)
and the Structural Similarity (SSIM) [68] that computes the
perceived image quality with respect to a reference. Metrics
are averaged for each frame of the output sequence. Lower
MSE, MAE and higher SSIM indicate better performances.

4.2. State of the art comparison

We evaluate PhyDNet against strong recent baselines,
including very competitive data-driven RNN architectures:

ConvLSTM [73], PredRNN [66], Causal LSTM [64], Mem-
ory in Memory (MIM) [67]. We also compare to methods
dedicated to specific datasets: DDPAE [21], a disentangling
method specialized and state-of-the-art on Moving MNIST
; and the physically-constrained advection-diffusion flow
model [11] that is state-of-the-art for the SST dataset.

Overall results presented in Table 1 reveal that PhyDNet
outperforms significantly all baselines on all four datasets.
The performance gain is large with respect to state-of-the-
art general RNN models, with a gain of 17 MSE points
for Moving MNIST, 6 MSE points for Human 3.6, 3 MSE
points for SST and 1 MSE point for Traffic BJ. In addition,
PhyDNet also outperforms specialized models: it gains 14
MSE points compared to the disentangling DDPAE model
[21] specialized for Moving MNIST, and 2 MSE points
compared to the advection-diffusion model [11] dedicated
to SST data. PhyDNet also presents large and consistent
gains in SSIM, indicating that image quality is greatly im-
proved by the physical regularization. Note that for Hu-
man 3.6, a few approaches use specific strategies dedi-
cated to human motion with additional supervision, e.g. hu-

https://github.com/vincent-leguen/PhyDNet
https://github.com/vincent-leguen/PhyDNet


Moving MNIST Traffic BJ Sea Surface Temperature Human 3.6
Method MSE MAE SSIM MSE × 100 MAE SSIM MSE × 10 MAE SSIM MSE / 10 MAE / 100 SSIM
ConvLSTM 103.3 182.9 0.707 48.5∗ 17.7∗ 0.978∗ 45.6∗ 63.1∗ 0.949∗ 50.4∗ 18.9∗ 0.776∗

PhyCell 50.8 129.3 0.870 48.9 17.9 0.978 38.2 60.2 0.969 42.5 18.3 0.891
PhyDNet 24.4 70.3 0.947 41.9 16.2 0.982 31.9 53.3 0.972 36.9 16.2 0.901

Table 2. An ablation study shows the consistent performance gain on all datasets of our physically-constrained PhyCell vs the general
purpose ConvLSTM, and the additional gain brought up by the disentangling architecture PhyDNet. * corresponds to results obtained by
running online code from the authors.

man pose in [61]. We perform similarly to [61] using
only unsupervised training, as shown in supplementary 2.3.
This is, to the best of our knowledge, the first time that
physically-constrained deep models reach state-of-the-art
performances on generalist video prediction datasets.

In Figure 4, we provide qualitative prediction results for
all datasets, showing that PhyDNet properly forecasts fu-
ture images for the considered horizons: digits are sharply
and accurately predicted for Moving MNIST in (a), the ab-
solute traffic flow error is low and approximately spatially
independent in (b), the evolving physical SST phenomena
are well anticipated in (c) and the future positions of the
person is accurately predicted in (d). We add in Figure 4(a)
a qualitative comparison to DDPAE [21], which fails to pre-
dict the future frames properly. Since the two digits over-
lap in the input sequence, DPPAE is unable to disentangle
them. In contrast, PhyDNet successfully learns the physical
dynamics of the two digits in a disentangled latent space,
leading a correct prediction. In supplementary 2.4, we de-
tail this comparison to DPPAE, and provide additional vi-
sualizations for all datasets.

4.3. Ablation Study

We perform here an ablation study to analyse the re-
spective contributions of physical modeling and disentan-
glement. Results are presented in Table 2 for all datasets.
We see that a 1-layer PhyCell model (only the left branch
of PhyDNet in Figure 2(b)) outperforms a 3-layers ConvL-
STM (50 MSE points gained for Moving MNIST, 8 MSE
points for Human 3.6, 7 MSE points for SST and equivalent
results for Traffic BJ), while PhyCell has much fewer pa-
rameters (270,000 vs. 3 million parameters). This confirms
that PhyCell is a very effective recurrent cell that success-
fully incorporates physical prior in deep models. When we
further add our disentangling strategy with the two-branch
architecture (PhyDNet), we have another performance gap
on all datasets (25 MSE points for Moving MNIST, 7 points
for Traffic and SST, and 5 points for Human 3.6), which
proves that physical modeling is not sufficient by itself to
perform general video prediction and that learning unknown
factors is necessary.

We qualitatively analyze in Figure 5 partial predictions
of PhyDNet for the physical branch ûp

t+1 = D(hp
t+1) and

residual branch ûr
t+1 = D(hr

t+1). As noted in Figure 1

Figure 5. Qualitative ablation results on Moving MNIST: partial
predictions show that PhyCell captures coarse localisation of dig-
its, whereas the ConvLSTM branch models the fine shape details
of digits. Every two frames are displayed.

for Moving MNIST, hp captures coarse localisations of ob-
jects, while hr captures fine-grained details that are not use-
ful for the physical model. Additional visualizations for the
other datasets and a discussion on the number of parameters
are provided in supplementary 2.5.

Influence of physical regularization We conduct in Ta-
ble 3 a finer ablation on Moving MNIST to study the impact
of the physical regularizationLmoment on the performance of
PhyCell and PhyDNet. When we disable Lmoment for train-
ing PhyCell, performances improve by 7 points in MSE.
This underlines that physical laws alone are too restrictive
for learning dynamics in a general context, and that com-
plementary factors should be accounted for. On the other
side, when we disable Lmoment for training our disentangled
architecture PhyDNet, performances decrease by 5 MSE
points (29 vs 24.4) compared to the physically-constrained
version. This proves that physical constraints are relevant,
but should be incorporated carefully in order to make both
branches cooperate. This enables to leverage physical prior,
while keeping remaining information necessary for pixel-
level prediction. Same conclusions can be drawn for the
other datasets, see supplementary 2.6.



Method MSE MAE SSIM
PhyCell 50.8 129.3 0.870
PhyCell without Lmoment 43.4 112.8 0.895
PhyDNet 24.4 70.3 0.947
PhyDNet without Lmoment 29.0 81.2 0.934

Table 3. Influence of physical regularization for Moving MNIST.

4.4. PhyCell analysis

4.4.1 Physical filter analysis

With the same general backbone architecture, PhyDNet can
express different PDE dynamics associated to the underly-
ing phenomena by learning specific ci,j coefficients com-
bining the partial derivatives in Eq (3). In Figure 6, we dis-
play the mean amplitude of the learned coefficients ci,j with
respect to the order of differentiation. For Moving MNIST,
the 0th and 1st orders are largely dominant, meaning a
purely advective behaviour coherent with the piecewise-
constant translation dynamics of the dataset. For Traffic BJ
and SST, there is also a global decrease in amplitude with
respect to order, we nonetheless notice a few higher order
terms appearing to be useful for prediction. For Human 3.6,
where the nature of the prior motion is less obvious, these
coefficients are more spread across order derivatives.

Moving MNIST Traffic BJ

SST Human 3.6
Figure 6. Mean amplitude of the combining coefficients ci,j with
respect to the order of the differential operators approximated.

4.4.2 Dealing with unreliable inputs

We explore here the robustness of PhyDNet when dealing
with unreliable inputs, that can arise in two contexts: long-
term forecasting and missing data. As explained in sec-
tion 3.3, PhyDNet can be used in a prediction mode in this
context, limiting the use of unreliable inputs, whereas gen-
eral RNNs cannot. To validate the relevance of the predic-
tion mode, we compare PhyDNet to DDPAE [21], based

on a standard RNN (LSTM) as predictor module. Fig-
ure 7 presents the results in MSE obtained by PhyDNet
and DDPAE on Moving MNIST (see supplementary 2.7 for
similar results in SSIM).

For long-term forecasting, we evaluate the performances
of both methods far beyond the prediction range seen dur-
ing training (up to 80 frames), as shown in Figure 7(a). We
can see that the performance drop (MSE increase rate) is
approximately linear for PhyNet, whereas it is much more
pronounced for DDPAE. For example, PhyDNet for 80-
steps prediction reaches similar performances in MSE than
DDPAE for 20-steps prediction. This confirms that PhyD-
Net can limit error accumulation during forecasting by us-
ing a powerful dynamical model.

Finally, we evaluate the robustness of PhyDNet on
DDPAE on missing data, by varying the ratio of missing
data (from 10 to 50%) in input sequences during training
and testing. A missing input image is replaced with a de-
fault value (0) image. In this case, PhyCell relies only on its
latent dynamics by setting Kt = 0, whereas DDPAE takes
the null image as input. Figure 7(b) shows that the perfor-
mance gap between PhyDNet and DDPAE increases with
the percentage of missing data.

(a) Long-term forecasting (b) Missing data
Figure 7. MSE comparison between PhyDNet and DDPAE [21]
when dealing with unreliable inputs.

5. Conclusion

We propose PhyDNet, a new model for disentangling
prior dynamical knowledge from other factors of variation
required for video prediction. PhyDNet enables to apply
PDE-constrained prediction beyond fully observed physi-
cal phenomena in pixel space, and to outperform state-of-
the-art performances on four generalist datasets. Our intro-
duced recurrent physical cell for modeling PDE dynamics
generalizes recent models and offers the appealing property
to decouple prediction from correction. Future work in-
clude using more complex numerical schemes, e.g. Runge-
Kutta [15], and extension to probabilistic forecasts with un-
certainty estimation [18, 9], e.g. with stochastic differential
equations [23].
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