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STRACT

on-Language Pretraining (VLP) and Foundation models have been the go-to recipe for achieving
A performance on general benchmarks. However, leveraging these powerful techniques for more
plex vision-language tasks, such as cooking applications, with more structured input data, is still

e investigated. In this work, we propose to leverage these techniques for structured-text based
putational cuisine tasks. Our strategy, dubbed VLPCook, first transforms existing image-text pairs

mage and structured-text pairs. This allows to pretrain our VLPCook model using VLP objectives
pted to the strutured data of the resulting datasets, then finetuning it on downstream computational
king tasks. During finetuning, we also enrich the visual encoder, leveraging pretrained foundation
els (e.g. CLIP) to provide local and global textual context. VLPCook outperforms current SoTA by

gnificant margin (+3.3 Recall@1 absolute improvement) on the task of Cross-Modal Food Retrieval
he large Recipe1M dataset. We conduct further experiments on VLP to validate their importance,
ecially on the Recipe1M+ dataset. Finally, we validate the generalization of the approach to other
s (i.e, Food Recognition) and domains with structured text such as the Medical domain on the

CO dataset. The code will be made publicly available.
© 2024 Elsevier Ltd. All rights reserved.

oduction

n-Language Pretraining (VLP) (Chen et al., 2020; Su
019; Li et al., 2021a) has become the general recipe to
oTA results on downstream tasks, with the key success
ing a shared latent space where all modalities are aligned.
radigm helps to overcome the human labor associated
signing a task or domain customized approaches, and
towards more simplification, by unifying the model, train-
ective and input/output format (Wang et al., 2022b,a). As
arge scale is an important ingredient to push the perfor-
limits, we have witnessed recently a lot of work going
direction, leading to what so-called foundation models
c et al., 2022; Yu et al., 2022; Radford et al., 2021; Chen
022).
ever, these approaches are still evaluated on general
arks (e.g., VQA (Antol et al., 2015), Image-Text Re-

(Plummer et al., 2015)), to the detriment of more com-

esponding author:
il: mustafa.shukor@sorbonne-universite.fr (Mustafa

plex albeit important tasks. These benchmarks highly resem
the pretraining data, in terms of image distribution, text for
length and structure. Similarly, existing Foundation models
shown great transfer capabilities to several downstream t
(Liu et al., 2023; Gao et al., 2024; Azad et al., 2023; Celaj e
2023), however, it is still also unclear how they perform bey
common tasks. The key stumbling block to leverage VLP
Foundation models for such domains, is the complex input
is hard to digest. In particular the tasks involving images
associated text that goes beyond simple image caption, to ri
longer and structured text.

In this work, we question how to leverage VLP and exis
Foundation models for tasks requiring structured text. As im
text alignment has proven to be successful for multimodal t
we focus on Image-Text Retrieval being one of the best be
marks to evaluate such alignment. To validate the prop
approach, we consider the traditional task of on Cross-M
Food Retrieval (Salvador et al., 2017), aiming at bridging
gap between VLP and Computational Cooking.

Computational Cooking or Food applications (Martinel e
2015; Ofli et al., 2017; Salvador et al., 2017) are one o
important applications that fit very well in this marginalized
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Local:
“eventing”,  “arena”, “jumping 

horse”, “jumping hurdle”,”'jumping 
saddle”, “jumping stand”, 

“jumping competition”,

Global:
“woman and horse”

Event:
“A woman on a white horse”

STE
Ingredients:

“1 lb. boneless beef sirloin steak, thinly sliced“, “'1/4 cup A.1. Original 
Sauce, divided”, “1/4 cup KRAFT Original Barbecue Sauce“...

Title:
“Caramelized Beef Skewers”

Instructions:
“Toss meat with 2 Tbsp”, “Preheat grill to medium-high heat”, 

“brushing frequently with the barbecue sauce mixture”...

Local Context 
“sirloin beef boneless 
steak”,”rib lamb chop”, 

“lamb boneless steak”…

Global Context
“grilled marinated beef fillet 
with a tangy sauce”, “ grilled 

chicken liver skewers” …

Foundation 
Model

Stage 1: Structured VLP Stage 2: Cross-Modal Finetuning

Image 
Encoder

Recipe 
Encoder

M
ultim

odal M
odule

Image 
Encoder

Recipe 
Encoder

VLPCook framework with 2 sequential stages. Stage 1 (left) or VSLP (Sec. 3.1): the Structured Text Extraction (STE) module transf
ion to a structured recipe-like input that is used to pretrain the model on a large corpus of structured text and images. Stage 2 (righ
odal Finetuning (Sec. 3.2): we leverage existing foundation models to enrich the vision encoder with local and global textual context.
tions are highlighted in red. The lock symbol means the model is frozen.

existing work to bridge the gap with VLP. In particular,
odal Food Retrieval (Salvador et al., 2017, 2021; Shukor

022b) which is the current main benchmark to assess the
performance on computational cooking. The images are
rent food plates with high inter and low intra category
ity. The text, consists of the corresponding recipe that
posed of 3 entities; title (global description), ingredients
escriptions, objects or entities that might be seen or not)
tructions (events that we generally see only their effects
results).

he main hurdle to enable VLP for food models is the
ata, we choose to adapt the input data to be compatible,
rally and semantically, to fit in these models. In addi-
e exploit existing large scale Vision-Language Models
), to guide the vision encoder with structured context.
idance is through region-level or local context (e.g. in-
ts), and image-level or global context (e.g. titles). Our

ch, dubbed VLPCook, consists of 2 stages; (1) Vision and
red-Language Pretraining (VSLP) of the model on the
structured text, then (2) Cross-Modal Finetuning guided
dation models. The approach is illustrated in Fig. 1.

main contributions can be summarized as follows: a) We
e a new approach for transforming existing datasets of
text pairs to datasets of image and structured-text pairs,
w that VLP on such datasets gives significant improve-
) We propose a new model that leverages existing pre-
foundation models to inject structured local and global
context to guide the visual encoder.
alidate the work, we conduct an extensive experimental
n the challenging task of Cross-Modal Food Retrieval,
eads to the following interesting outcomes: a) VLPCook
orms significantly other SoTA on the Recipe1M dataset,
solute improvement of +3 and +3.3 of R@1 on the 1k
k setups respectively. b) The first work showing the
eness of VLP in the cooking context, after experimenting

with different kinds of existing food approaches. c) Despite
was reported (Marin et al., 2019) on the poor generaliza
from Recipe1M+ to Recipe1M, we show that pretrainin
this large dataset can unlock its potential, and lead to l
improvement of +2.4 R@1 on Recipe1M test set. d) Con
to recent findings showing that foundation models can a
SoTA on standard benchmarks (e.g. VQA v2, COCO retrie
we show that finetuning these models lag significantly be
SoTA on the underlying task of Cross-Modal Food Retrieva
We validate the generalization of the work to other tasks
Food Recognition) and domains, such as the Medical dom
showing significant improvement over baselines.

2. Related Work

Vision and Language Pretraining (VLP). Vision and Lang
Pretraining (VLP) (Chen et al., 2020; Su et al., 2019)
at learning vision-language representation by pretrainin
datasets of images and texts ((Sharma et al., 2018; Schuhm
et al., 2021; Radford et al., 2021)). The model is then evalu
on several downstream tasks such as VQA (Antol et al., 20
and image-text retrieval (Plummer et al., 2015). This lin
research has shown promising success in the last few y
leading to state of art (SoTA) results (Li et al., 2021a; Dou e
2022; Li et al., 2022a) compared to task-customised models
providing modular encoders that are seamlessly used in a va
of ways. Besides several other improvements, the major
have been either in the architectural design, or the pretrai
objectives. On the model side, we have models with sepa
vision and language encoders (e.g., CLIP (Radford et al., 2
ALIGN (Jia et al., 2021)), that are fast at inference but req
large datasets to train, and heavy fusion models which u
cross modal interaction module (Dou et al., 2021; Li e
2021a; Shukor et al., 2022a) and achieve SoTA results w
training on reasonably sized datasets. On the learning side
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aining objectives can be categorised into contrastive (ITC
rd et al., 2021), ITM (Chen et al., 2020)) and masked
ions (MLM (Devlin et al., 2018), MIM (Shukor et al.,
Dou et al., 2022)). The models that work best are those

mbine several objectives.
ging Foundation Models. Foundation models (Radford
2021; Singh et al., 2021; Alayrac et al., 2022; Zhang
022) are general models that can be adapted to many
al and multimodal tasks. In spite of being successful,

the need for huge resources to train these models from
, researchers and practitioners have leveraged them, with-
burden of retraining; such as initialization and finetuning
r et al., 2022b; Shen et al., 2022), as frozen modules
r et al., 2023; Ramesh et al., 2022; Couairon et al., 2022),
ng the input (Sara et al., 2022) and extracting visual con-
Shukor et al., 2022a). In our work, we leverage existing
ed foundation models to extract different aspects of tex-

ntexts to enrich the visual representation.
pplications and Learning from Sructured Data. Many

ave been proposed in the recent years for food tasks, such
categorization (Bossard et al., 2014), calorie estimation
et al., 2015), image generation (Zhu and Ngo, 2020) and
odal retrieval (Salvador et al., 2017). Since the incep-
large scale food datasets such as Recipe1M (Salvador
017) followed by Recipe1M+ (Marin et al., 2019) the
cross-modal retrieval have gained a lot of attention (Li

2024; Song et al., 2023; Huang et al., 2023; Salvador
021; Shukor et al., 2022b). In terms of performance and
ctural designs, cross modal food retrieval work can be
into transformer-based (Salvador et al., 2021; Guerrero

021; Shukor et al., 2022b; Papadopoulos et al., 2022) or
rmer-free (Salvador et al., 2017; Carvalho et al., 2018;
al., 2019) approaches, with a significant improvements

former. Specifically, on the vision side, ViT is used as
ge encoder, and on the recipe side, standard (Guerrero
021) or hierarchical transformers (Salvador et al., 2021;
et al., 2022b) are adopted. In terms of training objectives,
all approaches use triplet loss (Weinberger et al., 2005;
t al., 2015) in addition to some regularization such as
ic triplet (Carvalho et al., 2018; Shukor et al., 2022b), em-
g classification (Salvador et al., 2017), adversarial losses
et al., 2019) and multimodal regularization with image-
tching objective (Shukor et al., 2022b). In addition to
plications, learning from structured texts and images has
vestigated in several domains and tasks, such as Medical
tions (Pelka et al., 2018), News applications (Biten et al.,
Multimedia Event extraction (Li et al., 2020b,a) and Situ-
ecognition (Suhail and Sigal, 2019; Cooray et al., 2020).
ontext of VLP, few work have been recently proposed (Li
022b,c), however, they do not consider the case of struc-
xt as input during test and focus on learning a structural
ntations.

Cook

iew: We introduce VLPCook, the first work trying to
the gap between VLP and the Computational Cooking

domain. VLPCook proposes a novel pretraining pipeline
tackles the issues of complex cooking inputs, and a fin
ing framework that leverages this pretraining and founda
models for cooking tasks, such as the task of Cross-M
Food Retrieval. VLPCook consists in 2 stages: (1) Vision
Structured-Language Pretraining (VSLP in Sec. 3.1); to per
VLP relevant to complex cooking recipes, we transform
image captions (in existing image-text pairs datasets) to s
tured text, and form new datasets of image and structured
pairs. This allows us to benefit from a large-scale VLP ada
to the specificity of cooking datasets. (2) Cross-Modal F
tuning (Sec. 3.2); on the downstream cooking task, wher
leverage existing foundation models, without any retrainin
contextualize the visual encoder with local and global tex
context. The approach is illustrated in Fig. 1. As our goal
leverage VLP and foundation models and show their ben
for the cooking domain, we decide to build our approach on
of recent SoTA food models and keep as much as possibl
same model architecture/finetuning objectives.
Background on VLP: VLP consists of pretraining Vi
Language models on large datasets of image-text pairs,
finetuning on several multimodal downstream tasks. Severa
training objectives are used in VLP. Here we focus only on
them; Image-Text Contrastive (ITC) and Image-Text Matc
(ITM):
ITC: several ITC losses have been proposed, such as InfoN
(Oord et al., 2018) and triplet loss (Ding et al., 2015; Weinbe
et al., 2005). In this work, we use a triplet loss on top o
unimodal encoders. On one hand, we pull the image embed
to be close to the corresponding recipe embedding, and
versa, and on the other hand, we push far away the embedd
of different recipes. ITC is used to globally align both modal
which is important for tasks such as cross-modal retrieval.
ITM: is a binary classification loss to train the model to pr
matched image-text pairs (Chen et al., 2020). This loss is app
on top of the multimodal module (e.g., transformer decoder)
aims to learn more fine-grained interaction between modal

3.1. Vision and Structured-Language Pretraining (VSLP)

Existing VLP approaches use image captions; a sentenc
scribing generally the image. However, image captions are
directly aligned with some domains such as Food applicat
Specifically, image-captions generally contain one sentenc
scribing globally the image, while recipes are longer (>
words), with a richer description, including global (title), l
(ingredients), and structured (hierarchical) information.

Here we focus on computational cooking tasks that req
such complex text input. The text or the recipe consis
different elements, forming a hierarchical structure; globa
formation about the image (e.g., title), local information
ingredients) and the interaction between different entities
instructions). The text is long (e.g. more than 10 ing
ents/instructions) and rich, as it contains very specific de
(e.g. ingredients name and quantity). Recent food models
dedicated recipe encoders (Salvador et al., 2021; Shukor e
2022b) to exploit such structure. They use several stage
transformers: one for each ingredient/instruction (T), anothe
the list of ingredients/instructions (HT), and the last stage
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T
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T
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Recipe Encoder

Image 
Encoder

ITC

ITM

Scene 
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Visual 
Concepts

Top K

CLIP

E

Illustration of our VSLP (Stage 1 of VLPCook). To en-
P for food models, image-text pairs are transformed to image
ctured-text pairs, that are compatible with hierarchical recipe
s. The Structured Text Extraction (STE) module generates 3

; (a) global description (”title”) using SGP, local descriptions
ients”) using CLIP-based retrieval, and the ”event” (”instruc-
hich can be simply the caption. During VLP, we optimize ITC
losses and keep the vision encoder frozen.

rmer decoders (HTD) that take the tokens of one entity
y and the tokens of other ones as keys and values (Fig.2).
ridge this gap between VLP and the food domain, we
e first to create datasets of structured image-text pairs,
e them to pretrain food models. This stage is illustrated
2.
mage Captions to Structured Text (Recipe-fying the

ns): we propose a new approach to transform existing
captions, in existing datasets of image and text pairs, to
nd structured text. Transforming existing datasets helps
verage large scale ones, which is cheaper than creating
ale datasets of image-recipe pairs from scratch. We make
logy between the obtained text and recipes and detail the
in the following:

information (Title): as the caption describes globally the
we use it to extract the title. However, it may also include
nnecessary details to be considered for the title, as well
e (especially for datasets scraped from internet). We filter
caption and keep the main elements, we extract only the
using Scene Graph Parsing (SGP) (Schuster et al., 2015)
ues and assemble them with a simple ”and” (e.g., title:
and Piano and stage).

nformation (Ingredients): here, local entities or objects
image should be included. As captions usually does
ntain many details, we leverage additional sources of
ation to extract all relevant, seen or unseen, objects in the
To this end, we use existing foundation models, without
ng them, as they enjoy good generalization capabilities
erent domains and tasks, to retrieve the closest entities.
cally, these entities are retrieved from a database that
s all objects extracted from the captions of several image-
tasets (e.g. COCO, SBU). To get the local entities of an

image, the image is fed to a CLIP visual encoder (Radford e
2021), then a cosine similarity is applied to compute the dist
between the image and all textual embeddings of local ent
to select the closest k ones.
Event (instructions): To describe the event, we conside
caption. Even though the caption might describe only one e
in which some of the objects participate, we found that u
additional captions does not help significantly.

Note that, this approach can be leveraged in a straightfor
way to other domains with structured text, such as Med
applications.
VLP with Structured Text: Once we create datasets of im
and structured-text pairs, we can feed such data to the hiera
cal text encoder and pretrain our model (Fig. 2) using stan
VLP objectives. We use both ITC and ITM objectives.
text-to-image ITC loss (similarly for the image-to-text ITC)
triplet loss is fed with the text (t) and image (v) embedding

l(ta, vp, vn, α) = [d(ta, vp) + α − d(ta, vn)]+,
t = Et(G, L, E), v = Ev(I),

where ta, vp and vn are the anchor, positive and negative
beddings respectively, α is the margin and d(·, ·) is a dist
function. The image embedding is obtained after processin
image (I) with the image encoder Ev. The text embeddin
obtained after processing the structured text, with the extra
local (L), global (G) and event (E) elements. Specifically, Et

encodes each entity independently using transformer enco
then exploits their interactions with cross attention (Shukor e
2022b). We then compute ITC loss (Litc) by summing the tr
losses over the batch and weight the loss by the inverse of
ber of active triplet as done in Adamine (Carvalho et al., 2
All examples in the batch are considered negatives, excep
images that correspond to the recipe and vice-versa. The
loss can be written as:

Litm = −ET,I∼D[y log(s(T, I))+
(1 − y) log(1 − s(T, I))],

where y is the label (i.e., 1 for matching pairs and 0 otherw
and D is the set of structured text (T = {L,G, E}) and imag
pairs, and s() is the score on top of the multimodal module.
total loss becomes:

L = Litc + λLitm

On the image side, to ease the pretraining, and leverage
initial visual representation, we follow LiT (Zhai et al., 2
and keep the vision encoder frozen, we also find that this g
better results. We use a general vocabulary (used in BERT)
change the embedding layer during this stage.

3.2. Leveraging Foundation Models for Structured Downstr
Tasks

We propose to leverage foundation models (CLIP (Rad
et al., 2021)), without any retraining, for cross modal foo
trieval. The approach is based on injecting local and gl
textual contexts in the image encoder, to enrich the visual r
sentation and steer it towards the textual embedding space.
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Illustration of our contextualized vision encoder (stage 2 of
ok). The ViT is contextualized by the context module, which
local and global context (CExt), then project them using a light-
module (CEmb) to obtain the context tokens. Local context
re concatenated to the image tokens at the input of the ViT, and
al context token (CLS token) is concatenated at the output.

t inherits the features and biases in the pretrained CLIP,
xcels in general cross-modal retrieval tasks. We adopt a
ransformer (ViT (Dosovitskiy et al., 2021)) on the image
e elaborate first on how we contextualize the ViT, then
il the finetuning step. The model is illustrated in Fig. 3.
tualized Visual Representation: We inject different
f contexts during the image encoding; global and local.
bal context, we inject different titles, while for local

e inject different ingredients. The titles and ingredients
racted from the image using our CLIP-based retrieval
ch (Sec. 3.1). During training, we inject different titles,
ents and different combination of them for each batch to
re variability and some regularization during training.
btain the context tokens, we concatenate all context ele-
all titles for global context or all ingredients for local one)
one sentence that is embedded using the Context Embed-
Emb) module (Fig. 3). CEmb consists of a light-weight

coder and a linear projection layer to project the textual
to the space of the visual tokens. We inject the local
early, in the input of the ViT (concatenation to the image
, and the global one, later in its output (concatenation of
ken before the linear projection), where we have higher
tion level and more global representation. The forward
the contextualized ViT can be expressed as follows:

x = ViT (Concat(i1, .., ik, cl
1, .., c

l
p)) (4)

x = F(Concat(xcls, c
g
cls))

i j, cl
j and cg

j are the tokens of the image (k tokens), local
t (p tokens) and global context respectively. The cls
the class token and F is a linear layer.
is different from other food approaches that add only

information (food category or class) later by concatenat-
o the visual embedding (Xie et al., 2021a) or other ap-
es that concatenate object tags (OSCAR (Li et al., 2020c))
al concepts (ViCHA (Shukor et al., 2022a)) only at the
without any distinction between local and global con-
ur approach is also inspired by prompt tuning techniques
et al., 2021; Lu et al., 2022) where a couple of learnable
are concatenated before the main text to adapt the frozen
to a given task.

Finetuning: We finetune the model on cross-modal foo
trieval. During this stage, we inject the local and global con
(Sec 3.2). The model consists of a ViT, hierarchical re
encoder and a mulitmodal module (Shukor et al., 2022b), m
we train the model using Adamine triplet loss (Carvalho e
2018) with incremental margin, in addition to the ITM loss
multimodal regularization at the output of the mulimodal m
ule. During test, we only use the unimodal encoders for
retrieval. The context is injected also during test.
Implementation details: the model consists of hierarch
transformer encoders and decoders on the recipe side, a
B/16 on the image side and a multimodal module. For VLP
start by pretraining (with frozen ViT) with learning rate (l
1e-5 and total batch size of 200 on 4 GPUs (50 per GPU) fo
epochs. In the second finetuning stage on Recipe1M, we fo
the implementation details of other work (Shukor et al., 20
We associate each image to 5 titles and 15 ingredients. Du
training, we sample only 2 titles and 4 ingredients rando
in each batch. The context is embedded by the first 2 la
of the BERT (Devlin et al., 2018) encoder, followed by li
projection (more details in the appendix).

4. Experiments

Datasets and metrics: We use several datasets; suc
Recipe1M (Salvador et al., 2017) where each example
sists of a recipe (title, ingredients, instructions) and im
pair. Recipe1M+ (Marin et al., 2019) that is an extensio
Recipe1M with 13M images and 1M recipe, and Image
Structured Text pairs (IST), which is our dataset constru
with the STE module from 3 public datasets; COCO (Lin e
2014), Visual Genome (Krishna et al., 2017) and SBU (Ord
et al., 2011) to form a total of 2M pairs including around
different images. We follow previous works and report the r
@1/5/10 in addition to RSUM which is the sum of the 3 re

10k

image-to-recipe recipe-to-imag

R@1 R@5 R@10 R@1 R@5

Adamine (Carvalho et al., 2018) 14.8 34.6 46.1 14.9 35.3
R2GAN (Zhu et al., 2019) 13.5 33.5 44.9 14.2 35.0
MCEN (Fu et al., 2020) 20.3 43.3 54.4 21.4 44.3
ACME (Wang et al., 2019) 22.9 46.8 57.9 24.4 47.9
SN (Zan et al., 2020) 22.1 45.9 56.9 23.4 47.3
IMHF (Li et al., 2021b) 23.4 48.2 58.4 24.9 48.3
Wang et. al (Wang et al., 2021a) 23.4 48.8 60.1 24.6 50.0
SCAN (Wang et al., 2021b) 23.7 49.3 60.6 25.3 50.6
HF-ICMA (Li et al., 2021c) 24.0 51.6 65.4 25.6 54.8
MSJE (Xie et al., 2021b) 25.6 52.1 63.8 26.2 52.5
SEJE (Xie et al., 2021c) 26.9 54.0 65.6 27.2 54.4
M-SIA (Li et al., 2021d) 29.2 55.0 66.2 30.3 55.6
DaC (Fain et al., 2019) 30.0 56.5 67.0 - -
X-MRS (Guerrero et al., 2021) 32.9 60.6 71.2 33.0 60.4
H-T (ViT) (Salvador et al., 2021) 33.5 62.1 72.8 33.7 62.2
T-Food (ViT) (Shukor et al., 2022b) 40.0 67.0 75.9 41.0 67.3
T-Food (CLIP-ViT) (Shukor et al., 2022b) 43.4 70.7 79.7 44.6 71.2

VLPCook 45.3 72.4 80.8 46.4 73.1
VLPCook (R1M+) 46.7 73.3 83.3 47.8 74.1

Table 1: Comparison with other work. Recall@k (↑) is rep
on the Recipe1M test set. Our approaches (VLPCook) signific
outperform all existing work. Best metrics are in bold, and next
metrics are underlined.
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undation Models in the Cooking Context.
SoTA results on general benchmarks are currently ob-

by finetuning foundation models, however, here we show
r tasks requiring more complex input, such as food re-
this paradigm lags significantly behind existing food

. To this end, we finetune on Recipe1M for cross-modal
l, considering 2 kinds of approaches; light fusion (CLIP)
vy fusion (ALBEF) approaches.
Radford et al., 2021): Is trained contrastively on 400M
ge-text pairs and consists of a ViT-Base/16 as image
r and a transformer as text encoder.

(Li et al., 2021a): Is trained using ITC, ITM and MLM
on 14M images and their corresponding text. It consists
T-Base/16 on the image side, a BERT on the text side, in
n to a multimodal decoder.
both models, we change the word embedding layer, the
lary, and maximum number of textual tokens to 300.
in for 120 epochs with the two losses; Adamine triplet
cremental margin, semantic regularization, and ITM (for
). We use Adam optimizer and learning rate of 1e-5 (for
iT we use lr of 1e-6) and a total batch size of 80 and 56

IP and ALBEF respectively. Tab. 2 shows that CLIP and
give reasonable performance and outperform most of

elines (Tab. 1). However, and contrary to other general
arks, their performance is still below SoTA food models.

image-to-recipe recipe-to-image
odel R@1 R@5 R@10 R@1 R@5 R@10

-MRS (Guerrero et al., 2021) 64.0 88.3 92.6 63.9 87.6 92.6
-T (ViT) (Salvador et al., 2021) 64.2 89.1 93.4 64.5 89.3 93.8
Food (Shukor et al., 2022b) 68.2 87.9 91.3 68.3 87.8 91.5

LIP 63.5 85.4 90.0 64.1 85.8 90.1
LBEF 61.0 84.7 89.9 61.9 84.6 89.8

2: Finetuning foundation models on Recipe1M (1k setup).

PCook Results
s on Recipe1M. Tab. 1 shows that VLPCook significantly
orms current SoTA (+1.9 R@1) on the challenging 10k
Importantly, the gap between VLPCook pretrained on
1M+ and SoTA is even bigger (+3.4 R@1 on 10k). We
ow some qualitative results in Fig. 4. We can notice the
rity of VLPCook compared to the current SoTA (Tfood
iT). Specifically, in the first example, VLPCook cor-

retrieves the right image. In the second example, our
ch retrieves semantically similar images (Lasagna), while
od, there are totally different plates (e.g. rice, pasta).

image-to-recipe recipe-to-image
R@1 R@5 R@10 R@1 R@5 R@10

al. Marin et al. (2019) 17.0 38.0 48.0 17.0 42.0 54.0
44.3 75.0 83.60 45.0 75.5 83.9

CLIP-ViT) ∗ 46.5 76.8 85.4 46.8 77.0 85.2

k∗ 45.2 75.9 84.0 47.3 77.6 85.3

: Comparison with other work. Recall@k (↑) is reported on the
M+ test set (1k setup). Best metrics are in bold. VLPCook∗

ithout VLP. ∗: we retrain these models on Recipe1M+.

s on Recipe1M+. in Tab. 3, we show the first finetuning
on Recipe1M+ with interesting scores (more details in

the appendix). Due to the large dataset size, we report th
sults of VLPCook without VLP (only with the context mod
The scores are almost multiplied by 3 compared to the bas
(Marin et al., 2019). Moreover, we retrain the SoTA T-F
models on this dataset and show significant improvment
pared to T-Fodd and comparable scores to T-Food (CLIP-V
This reveal that our context module is more beneficial for l
data regime (e.g., on Recipe1M dataset) The low scores on
challenging dataset makes it interesting to devise more com
approaches in the future.

image-to-recipe recipe-to-image
Model R@1 R@5 R@10 R@1 R@5 R@

VLPCook 73.6 90.5 93.3 74.7 90.7 93

w/o VSLP 72.3 90.6 93.4 73.6 90.8 93
w/o VSLP and CLIP-ViT 69.7 88.6 91.9 70.7 88.8 92
w/o VSLP and CLIP-ViT and Context 68.2 87.9 91.3 68.3 87.8 91

Table 4: Ablation Study. Both VSLP and Context module bring si
cant improvement. Results on Recipe1M test set (1k setup).

image-to-recipe recipe-to-imag
Model R@1 R@5 R@10 R@1 R@5 R

Baseline (B) 68.2 87.9 91.3 68.3 87.8

B + VLP (w/o strcuture) 67.2 87.3 91.0 67.5 87.5
B + VSLP (Unfreeze Vis. Enc.) 67.6 87.3 91.3 67.6 87.2
B + VSLP (w/ VinVL tags) 68.8 88.3 91.8 69.9 88.3

B + VSLP (ours) 69.5 88.0 91.4 69.7 88.1

Table 5: Ablation study on VSLP. Different variants of VSLP. Re
on Recipe1M test set (1k setup). Baseline corresponds to VLPC
using ViT and without VSLP and the Context module.

4.3. Ablation Study of VLPCook
We report the scores on the 1k setup of Recipe1M test s

VLPCook (Sec. 3): In Tab. 4, we show the effect of our
tributions, mainly VLP and Context injection. We can no
that each one brings significant improvement compared to
baseline, as well as the combination of them. In addition
show different design choices for VLP in Tab.5. We can no
that pretraining with structured text is better than traditi
VLP on plain text. Moreover, freezing the visual encoder
using additional vinvl tags bring additional improvements.
Local and Global Context (Sec. 3.2): In Tab. 6, we do a
lation on the type and the position of the injected context
notice that using only the ingredients (Ing) or titles (Ttl) (lin
and 3 Tab. 6) outperforms the baseline (line 1) without any
text. Moreover, using both contexts is always better, regard
of their position. We also show that the best configuration
injecting the ingredients at the input to the visual encoder
the titles at the output (line 5).
VSLP on the Recipe1M+ Dataset Recipe1M+ is the lar
dataset for food applications, however, to the best of our kn
edge, there is no work, besides the work that introduced
dataset (Marin et al., 2019), that consider it for cross-m
food retrieval. This might be due to, in addition to computa
resources needed, the poor generalization from Recipe1M
Recipe1M as shown by the authors (Marin et al., 2019). H
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Ingredients:
4 chicken breast halves, 8 slices provolone 

cheese or 8 slices mozzarella cheese, 
barbecue sauce, 8 slices lettuce, ..tomatoes..

Title:
Barbecued Chicken Sandwiches

Instructions:
Pound each chicken thin -- this helps it to 

cook quickly.., Heat grill to medium and cook 
chicken with barbecue sauce...

Ingredients:
8 ounces lasagna noodles, uncooked, 15 
ounces ricotta cheese, 12 cup parmesan 

cheese, grated, 2 eggs, 1 (26 ounce) jar …

Title:
No-Boil Cheesy Lasagna (Vegetarian) With 

Optional Meat Sauce

Instructions:
Preheat oven to 350F, Combine ricotta, 

parmesan, and eggs and mix well, In a 9x13 
dish, spread about 1/3 of the sauce, …

TFood (C
LIP

-ViT)
TFood (C

LIP
-ViT)

V
LP

C
ook

V
LP

C
ook

No-Boil Cheesy Lasagna 
(Vegetarian) With Optional Meat 

Sauce

Company Turkey Lasagna

Shelly's Lasagna

Cajun Chicken Lasagna Cheesy Meaty Lasagna
No-Boil Cheesy Lasagna 

(Vegetarian) With Optional Meat 
Sauce

No-Boil Cheesy Lasagna 
(Vegetarian) With Optional Meat 

Sauce

No-Boil Cheesy Lasagna 
(Vegetarian) With Optional Meat 

Sauce
Chicken Parmesan 7 Layer Casserole

Barbecued Chicken Sandwiches BLT Burger With Garlicky 
Mayonnaise

Italian Meatball Burger Pizza Burgers

Barbecued Chicken Sandwiches Barbecued Chicken Sandwiches American Turkey Burgers Portobello Mushroom Tuna Melt Hamburgers

Barbecued Chicken Sandwiches

Recipe-to-image comparison on the Recipe1M test set, 1k setup. TFood (first and third rows) vs. our VLPCook (second and fourth r
ge in green is the ground truth, followed by the top 4 retrieved images in order. One can notice that our VLPCook approach better cap
egrained details (type of meat) and most of the retrieved images are semantically similar.

Context Position RSUM RSUM
RSUM

Ing ttl Input Output 1K 10K

✗ ✗ 495.00 367.10 862.10

✓ ✓ 500.54 371.43 871.97

✓ ✓ 498.61 372.16 870.77

✓ ✓ ✓(ttl&Ing) 500.86 374.68 875.54
rs) ✓ ✓ ✓(Ing) ✓(ttl) 501.75 374.30 876.05

✓ ✓ ✓(ttl) ✓(Ing) 501.79 372.44 874.23

: Ablation study on the context and injection position. Local
(Ing) is better injected in the input of the ViT, and global one
he output.

to leverage this dataset, and assess its benefit during pre-
g. We pretrain several variants, for 30 epochs on all the
of Recipe1M+ (after excluding those in the validation

t set of Recipe1M) following the same implementation
as Sec. 3 (except training using only 2 GPUs), and then
e these models on Recipe1M. The results of Tab. 7 show
cipe1M+ is more effective than our IST, however, the
ontains only 1M images compared to 13M in the former,
images and recipes are in the same distribution of those

finetuning. To fairly compare with IST, we also pretrain
ipe1M+ by keeping only 10% of the images (i.e 1.3 im-
average per recipe). Interestingly, we can notice from

that pretraining on IST leads to better results.

rther Experiments

ecognition. Retrieval task is one of the best setups
uate cross-modal alignment, on the other hand, there is
blished consensus in the community that cross-modal

Model VSLP
image-to-recipe recipe-to-image

R@1 R@5 R@10 R@1 R@5 R@

VLPCook w/o IST 69.8 89.2 92.7 70.9 89.6 92
CLIP-ViT R1M+ 71.0 89.3 92.7 71.9 89.6 92

VLPCook
IST 73.6 90.5 93.3 74.7 90.7 93

R1M+ 74.9 91.4 93.7 75.6 91.2 93

VLPCook R1M+ (1.3M Im.) 73.4 90.7 93.2 73.8 90.8 93

Table 7: VSLP on our IST dataset vs on Recipe1M+ (R1M

alignment significantly helps solving multimodal downstr
tasks. To echo this finding, we test the benefit of VLP for F
Recognition on Food101 (Bossard et al., 2014) and the l
ISIA Food500 (Min et al., 2020). We compare SoTA
models to our VLPCooK pre-trained with VSLP, following
linear probe setup on top of frozen ViTs. Table .8 below sh
very good results, e.g. we have a significant improveme
accuracy for Food Recognition. This shows the ability of
approach to generalize to other food tasks.

Food Recognition ImageNet (ViT) H-T (ViT) VLPCook (V

Food101 80.99 84.44 89.14
ISIA Food500 52.34 57.562 60.30

Table 8: Linear regression classification on the test sets of Foo
and ISIA Food500. Backbone (ViT) kept frozen.

Beyond Computational Cooking: Medical Domain Ou
proach can be seamlessly adapted to other domains. To sup
that, we consider the task of structured medical retrieval.
experiment with Text-Image Retrieval for medical datab
We use the large scale ROCO dataset (Pelka et al., 2018)
consists of 81k radiology images and ”reports” pairs, wher
report contains a caption, keywords, Unified Medical Lang
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s Concept Unique Identifiers (CUIs) and Semantic Types.
sider the list of keywords and Semantic Types as ”ingre-
, the caption as ”instruction” and we extract the title from
tion (Sec.3.1). Table 9, shows that our VSLP (VSLP)
additional ∼4 points of R@1 with respect to our baseline
ook). This shows the broader impact of our approach and
efits for domains and tasks requiring structured textual

PT image-to-text text-to-image
R@1 R@5 R@10 R@1 R@5 R@10

ok ∅ 14.53 38.20 51.71 15.08 39.03 51.83
ok VSLP 18.44 42.78 55.90 17.95 42.51 55.06

: Our VSLP on ROCO Image-Text Medical Retrieval dataset.

clusion

is work, we show the benefits of VSLP for Computational
g. We also, successfully leverage pretrained foundation
, to enrich the vision encoder with structured context.

contributions led to a new SoTA for Cross-Modal Food
al. We show that this approach has a broader impact and
adopted for other computational cooking applications or
eneral multimodal tasks, especially, those with complex
uch as Medical databases.
wledgments. This work was supported by ANR grant
DEEP (ANR-20-CHIA-0022), and HPC resources of
2022-[AD011013415] made by GENCI.
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Existing general foundation models underperoform on computaional cooking tasks.

Domain specific applications need more adapted pretraining approaches.

Adapting existing general datasets of image-text pairs to be closer to food data.

Vision Language Pretraining on adapted datasets helps cooking downstream tasks.

Foundation models can be leveraged for Food models by injecting external knowledge.
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