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ABSTRACT

Vision-Language Pretraining (VLP) and Foundation models have been the go-to recipe for achieving
SoTA performance on general benchmarks. However, leveraging these powerful techniques for more
complex vision-language tasks, such as cooking applications, with more structured input data, is still
little investigated. In this work, we propose to leverage these techniques for structured-text based
computational cuisine tasks. Our strategy, dubbed VLPCook, first transforms existing image-text pairs
to image and structured-text pairs. This allows to pretrain our VLPCook model using VLP objectives
adapted to the strutured data of the resulting datasets, then finetuning it on downstream computational
cooking tasks. During finetuning, we also enrich the visual encoder, leveraging pretrained foundation
models (e.g. CLIP) to provide local and global textual context. VLPCook outperforms current SOTA by
a significant margin (+3.3 Recall@1 absolute improvement) on the task of Cross-Modal Food Retrieval
on the large Recipel M dataset. We conduct further experiments on VLP to validate their importance,
especially on the Recipe 1M+ dataset. Finally, we validate the generalization of the approach to other
tasks (i.e, Food Recognition) and domains with structured text such as the Medical domain on the
ROCO dataset. The code will be made publicly available.

© 2024 Elsevier Ltd. All rights reserved.

1. Introduction plex albeit important tasks. These benchmarks highly resemble
the pretraining data, in terms of image distribution, text format,
length and structure. Similarly, existing Foundation models have
shown great transfer capabilities to several downstream tasks
(Liu et al., 2023; Gao et al., 2024; Azad et al., 2023; Celaj et al.,
2023), however, it is still also unclear how they perform beyond
common tasks. The key stumbling block to leverage VLP and
Foundation models for such domains, is the complex input that
is hard to digest. In particular the tasks involving images with
associated text that goes beyond simple image caption, to richer,
longer and structured text.

Vision-Language Pretraining (VLP) (Chen et al., 2020; Su
et al., 2019; Li et al., 2021a) has become the general recipe to
attain SoTA results on downstream tasks, with the key success
is learning a shared latent space where all modalities are aligned.
This paradigm helps to overcome the human labor associated
with designing a task or domain customized approaches, and
pushes towards more simplification, by unifying the model, train-
ing objective and input/output format (Wang et al., 2022b,a). As
going large scale is an important ingredient to push the perfor-
mance limits, we have witnessed recently a lot of work going
in this direction, leading to what so-called foundation models
(Alayrac et al., 2022; Yu et al., 2022; Radford et al., 2021; Chen
et al., 2022).

However, these approaches are still evaluated on general
benchmarks (e.g., VQA (Antol et al., 2015), Image-Text Re-
trieval (Plummer et al., 2015)), to the detriment of more com-

In this work, we question how to leverage VLP and existing
Foundation models for tasks requiring structured text. As image-
text alignment has proven to be successful for multimodal tasks,
we focus on Image-Text Retrieval being one of the best bench-
marks to evaluate such alignment. To validate the proposed
approach, we consider the traditional task of on Cross-Modal
Food Retrieval (Salvador et al., 2017), aiming at bridging the
gap between VLP and Computational Cooking.

**Corresponding author:
e-mail: mustafa.shukor@sorbonne-universite.fr (Mustafa
Shukor)

Computational Cooking or Food applications (Martinel et al.,
2015; Ofli et al., 2017; Salvador et al., 2017) are one of the
important applications that fit very well in this marginalized list,
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Fig. 1: VLPCook framework with 2 sequential stages. Stage 1 (left) or VSLP (Sec. 3.1): the Structured Text Extraction (STE) module transforms
the caption to a structured recipe-like input that is used to pretrain the model on a large corpus of structured text and images. Stage 2 (right) or
Cross-Modal Finetuning (Sec. 3.2): we leverage existing foundation models to enrich the vision encoder with local and global textual context. Main
contributions are highlighted in red. The lock symbol means the model is frozen.

with no existing work to bridge the gap with VLP. In particular,
Cross-Modal Food Retrieval (Salvador et al., 2017, 2021; Shukor
et al., 2022b) which is the current main benchmark to assess the
model performance on computational cooking. The images are
of different food plates with high inter and low intra category
similarity. The text, consists of the corresponding recipe that
is composed of 3 entities; title (global description), ingredients
(local descriptions, objects or entities that might be seen or not)
and instructions (events that we generally see only their effects
or final results).

As the main hurdle to enable VLP for food models is the
input data, we choose to adapt the input data to be compatible,
structurally and semantically, to fit in these models. In addi-
tion, we exploit existing large scale Vision-Language Models
(VLMs), to guide the vision encoder with structured context.
This guidance is through region-level or local context (e.g. in-
gredients), and image-level or global context (e.g. titles). Our
approach, dubbed VLPCook, consists of 2 stages; (1) Vision and
Structured-Language Pretraining (VSLP) of the model on the
created structured text, then (2) Cross-Modal Finetuning guided
by foundation models. The approach is illustrated in Fig. 1.

Our main contributions can be summarized as follows: a) We
propose a new approach for transforming existing datasets of
image-text pairs to datasets of image and structured-text pairs,
and show that VLP on such datasets gives significant improve-
ment. b) We propose a new model that leverages existing pre-
trained foundation models to inject structured local and global
textual context to guide the visual encoder.

To validate the work, we conduct an extensive experimental
study on the challenging task of Cross-Modal Food Retrieval,
which leads to the following interesting outcomes: a) VLPCook
outperforms significantly other SOTA on the RecipelM dataset,
with absolute improvement of +3 and +3.3 of R@1 on the 1k
and 10k setups respectively. b) The first work showing the
effectiveness of VLP in the cooking context, after experimenting

with different kinds of existing food approaches. ¢) Despite what
was reported (Marin et al., 2019) on the poor generalization
from RecipelM+ to RecipelM, we show that pretraining on
this large dataset can unlock its potential, and lead to large
improvement of +2.4 R@1 on RecipelM test set. d) Contrary
to recent findings showing that foundation models can attain
SoTA on standard benchmarks (e.g. VQA v2, COCO retrieval),
we show that finetuning these models lag significantly behind
SoTA on the underlying task of Cross-Modal Food Retrieval. e)
We validate the generalization of the work to other tasks (i.e.,
Food Recognition) and domains, such as the Medical domain,
showing significant improvement over baselines.

2. Related Work

Vision and Language Pretraining (VLP). Vision and Language
Pretraining (VLP) (Chen et al., 2020; Su et al., 2019) aims
at learning vision-language representation by pretraining on
datasets of images and texts ((Sharma et al., 2018; Schuhmann
et al., 2021; Radford et al., 2021)). The model is then evaluated
on several downstream tasks such as VQA (Antol et al., 2015),
and image-text retrieval (Plummer et al., 2015). This line of
research has shown promising success in the last few years,
leading to state of art (SoTA) results (Li et al., 2021a; Dou et al.,
2022; Li et al., 2022a) compared to task-customised models, and
providing modular encoders that are seamlessly used in a variety
of ways. Besides several other improvements, the major ones
have been either in the architectural design, or the pretraining
objectives. On the model side, we have models with separate
vision and language encoders (e.g., CLIP (Radford et al., 2021),
ALIGN (Jia et al., 2021)), that are fast at inference but requires
large datasets to train, and heavy fusion models which use a
cross modal interaction module (Dou et al., 2021; Li et al.,
2021a; Shukor et al., 2022a) and achieve SoTA results while
training on reasonably sized datasets. On the learning side, the



main training objectives can be categorised into contrastive (ITC
(Radford et al., 2021), ITM (Chen et al., 2020)) and masked
predictions (MLM (Devlin et al., 2018), MIM (Shukor et al.,
2022a; Dou et al., 2022)). The models that work best are those
that combine several objectives.

Leveraging Foundation Models. Foundation models (Radford
et al., 2021; Singh et al., 2021; Alayrac et al., 2022; Zhang
et al., 2022) are general models that can be adapted to many
unimodal and multimodal tasks. In spite of being successful,
due to the need for huge resources to train these models from
scratch, researchers and practitioners have leveraged them, with-
out the burden of retraining; such as initialization and finetuning
(Shukor et al., 2022b; Shen et al., 2022), as frozen modules
(Shukor et al., 2023; Ramesh et al., 2022; Couairon et al., 2022),
enriching the input (Sara et al., 2022) and extracting visual con-
cepts (Shukor et al., 2022a). In our work, we leverage existing
pretrained foundation models to extract different aspects of tex-
tual contexts to enrich the visual representation.

Food Applications and Learning from Sructured Data. Many
work have been proposed in the recent years for food tasks, such
as food categorization (Bossard et al., 2014), calorie estimation
(Myers et al., 2015), image generation (Zhu and Ngo, 2020) and
cross modal retrieval (Salvador et al., 2017). Since the incep-
tion of large scale food datasets such as RecipelM (Salvador
et al., 2017) followed by Recipel M+ (Marin et al., 2019) the
task of cross-modal retrieval have gained a lot of attention (Li
et al., 2024; Song et al., 2023; Huang et al., 2023; Salvador
et al., 2021; Shukor et al., 2022b). In terms of performance and
architectural designs, cross modal food retrieval work can be
divided into transformer-based (Salvador et al., 2021; Guerrero
et al., 2021; Shukor et al., 2022b; Papadopoulos et al., 2022) or
transformer-free (Salvador et al., 2017; Carvalho et al., 2018;
Fain et al., 2019) approaches, with a significant improvements
of the former. Specifically, on the vision side, ViT is used as
an image encoder, and on the recipe side, standard (Guerrero
et al., 2021) or hierarchical transformers (Salvador et al., 2021;
Shukor et al., 2022b) are adopted. In terms of training objectives,
almost all approaches use triplet loss (Weinberger et al., 2005;
Ding et al., 2015) in addition to some regularization such as
semantic triplet (Carvalho et al., 2018; Shukor et al., 2022b), em-
bedding classification (Salvador et al., 2017), adversarial losses
(Wang et al., 2019) and multimodal regularization with image-
text matching objective (Shukor et al., 2022b). In addition to
food applications, learning from structured texts and images has
been investigated in several domains and tasks, such as Medical
applications (Pelka et al., 2018), News applications (Biten et al.,
2019), Multimedia Event extraction (Li et al., 2020b,a) and Situ-
ation Recognition (Suhail and Sigal, 2019; Cooray et al., 2020).
In the context of VLP, few work have been recently proposed (Li
et al., 2022b,c), however, they do not consider the case of struc-
tured text as input during test and focus on learning a structural
representations.

3. VLPCook

Overview: We introduce VLPCook, the first work trying to
bridge the gap between VLP and the Computational Cooking
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domain. VLPCook proposes a novel pretraining pipeline that
tackles the issues of complex cooking inputs, and a finetun-
ing framework that leverages this pretraining and foundation
models for cooking tasks, such as the task of Cross-Modal
Food Retrieval. VLPCook consists in 2 stages: (1) Vision and
Structured-Language Pretraining (VSLP in Sec. 3.1); to perform
VLP relevant to complex cooking recipes, we transform the
image captions (in existing image-text pairs datasets) to struc-
tured text, and form new datasets of image and structured text
pairs. This allows us to benefit from a large-scale VLP adapted
to the specificity of cooking datasets. (2) Cross-Modal Fine-
tuning (Sec. 3.2); on the downstream cooking task, where we
leverage existing foundation models, without any retraining, to
contextualize the visual encoder with local and global textual
context. The approach is illustrated in Fig. 1. As our goal is to
leverage VLP and foundation models and show their benefits
for the cooking domain, we decide to build our approach on top
of recent SoTA food models and keep as much as possible the
same model architecture/finetuning objectives.

Background on VLP: VLP consists of pretraining Vision-
Language models on large datasets of image-text pairs, then
finetuning on several multimodal downstream tasks. Several pre-
training objectives are used in VLP. Here we focus only on 2 of
them; Image-Text Contrastive (ITC) and Image-Text Matching
(ITM):

ITC: several ITC losses have been proposed, such as InfoNCE
(Oord et al., 2018) and triplet loss (Ding et al., 2015; Weinberger
et al., 2005). In this work, we use a triplet loss on top of the
unimodal encoders. On one hand, we pull the image embedding
to be close to the corresponding recipe embedding, and vice
versa, and on the other hand, we push far away the embeddings
of different recipes. ITC is used to globally align both modalities,
which is important for tasks such as cross-modal retrieval.
ITM: is a binary classification loss to train the model to predict
matched image-text pairs (Chen et al., 2020). This loss is applied
on top of the multimodal module (e.g., transformer decoder) and
aims to learn more fine-grained interaction between modalities.

3.1. Vision and Structured-Language Pretraining (VSLP)

Existing VLP approaches use image captions; a sentence de-
scribing generally the image. However, image captions are not
directly aligned with some domains such as Food applications.
Specifically, image-captions generally contain one sentence de-
scribing globally the image, while recipes are longer (> 200
words), with a richer description, including global (title), local
(ingredients), and structured (hierarchical) information.

Here we focus on computational cooking tasks that require
such complex text input. The text or the recipe consists of
different elements, forming a hierarchical structure; global in-
formation about the image (e.g., title), local information (e.g.
ingredients) and the interaction between different entities (e.g.
instructions). The text is long (e.g. more than 10 ingredi-
ents/instructions) and rich, as it contains very specific details
(e.g. ingredients name and quantity). Recent food models have
dedicated recipe encoders (Salvador et al., 2021; Shukor et al.,
2022b) to exploit such structure. They use several stages of
transformers: one for each ingredient/instruction (T), another for
the list of ingredients/instructions (HT), and the last stage with
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Fig. 2: Illustration of our VSLP (Stage 1 of VLPCook). To en-
able VLP for food models, image-text pairs are transformed to image
and structured-text pairs, that are compatible with hierarchical recipe
encoders. The Structured Text Extraction (STE) module generates 3
entities; (a) global description ("title”) using SGP, local descriptions
("ingredients”) using CLIP-based retrieval, and the “event” ("instruc-
tions””) which can be simply the caption. During VLP, we optimize ITC
and ITM losses and keep the vision encoder frozen.

transformer decoders (HTD) that take the tokens of one entity
as query and the tokens of other ones as keys and values (Fig.2).
To bridge this gap between VLP and the food domain, we
propose first to create datasets of structured image-text pairs,
then use them to pretrain food models. This stage is illustrated
in Fig. 2.
From Image Captions to Structured Text (Recipe-fying the
captions): we propose a new approach to transform existing
image captions, in existing datasets of image and text pairs, to
richer and structured text. Transforming existing datasets helps
us to leverage large scale ones, which is cheaper than creating
large scale datasets of image-recipe pairs from scratch. We make
the analogy between the obtained text and recipes and detail the
process in the following:
Global information (Title): as the caption describes globally the
image, we use it to extract the title. However, it may also include
some unnecessary details to be considered for the title, as well
as noise (especially for datasets scraped from internet). We filter
out the caption and keep the main elements, we extract only the
objects using Scene Graph Parsing (SGP) (Schuster et al., 2015)
techniques and assemble them with a simple “and” (e.g., title:
‘Woman and Piano and stage).
Local information (Ingredients): here, local entities or objects
in the image should be included. As captions usually does
not contain many details, we leverage additional sources of
information to extract all relevant, seen or unseen, objects in the
image. To this end, we use existing foundation models, without
retraining them, as they enjoy good generalization capabilities
on different domains and tasks, to retrieve the closest entities.
Specifically, these entities are retrieved from a database that
contains all objects extracted from the captions of several image-
text datasets (e.g. COCO, SBU). To get the local entities of an
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image, the image is fed to a CLIP visual encoder (Radford et al.,
2021), then a cosine similarity is applied to compute the distance
between the image and all textual embeddings of local entities,
to select the closest k ones.

Event (instructions): To describe the event, we consider the
caption. Even though the caption might describe only one event
in which some of the objects participate, we found that using
additional captions does not help significantly.

Note that, this approach can be leveraged in a straightforward

way to other domains with structured text, such as Medical
applications.
VLP with Structured Text: Once we create datasets of images
and structured-text pairs, we can feed such data to the hierarchi-
cal text encoder and pretrain our model (Fig. 2) using standard
VLP objectives. We use both ITC and ITM objectives. For
text-to-image ITC loss (similarly for the image-to-text ITC), the
triplet loss is fed with the text (f) and image (v) embeddings:

(24, Vps Vns a) = [d(t,, V[J) +a —d(te, vp)ls, (D
1=8&(G,LE), v=8&),

where 1, v, and v, are the anchor, positive and negative em-
beddings respectively, « is the margin and d(:, -) is a distance
function. The image embedding is obtained after processing the
image (I) with the image encoder &,. The text embedding is
obtained after processing the structured text, with the extracted
local (L), global (G) and event (E) elements. Specifically, &, first
encodes each entity independently using transformer encoders,
then exploits their interactions with cross attention (Shukor et al.,
2022b). We then compute ITC loss (L;;.) by summing the triplet
losses over the batch and weight the loss by the inverse of num-
ber of active triplet as done in Adamine (Carvalho et al., 2018).
All examples in the batch are considered negatives, except the
images that correspond to the recipe and vice-versa. The ITM
loss can be written as:

Lim = ~Er-plylog(s(T, 1))+ @)
(1 =y)log(l = (T, )],

where y is the label (i.e., 1 for matching pairs and O otherwise)
and D is the set of structured text (T = {L, G, E}) and image (I)
pairs, and s() is the score on top of the multimodal module. The
total loss becomes:

L=Lye+ AL 3)

On the image side, to ease the pretraining, and leverage the
initial visual representation, we follow LiT (Zhai et al., 2022)
and keep the vision encoder frozen, we also find that this gives
better results. We use a general vocabulary (used in BERT) and
change the embedding layer during this stage.

3.2. Leveraging Foundation Models for Structured Downstream
Tasks

We propose to leverage foundation models (CLIP (Radford
et al., 2021)), without any retraining, for cross modal food re-
trieval. The approach is based on injecting local and global
textual contexts in the image encoder, to enrich the visual repre-
sentation and steer it towards the textual embedding space. This
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Fig. 3: Illustration of our contextualized vision encoder (stage 2 of
VLPCook). The ViT is contextualized by the context module, which
extracts local and global context (CExt), then project them using a light-
weight module (CEmb) to obtain the context tokens. Local context
tokens are concatenated to the image tokens at the input of the ViT, and
the global context token (CLS token) is concatenated at the output.

context inherits the features and biases in the pretrained CLIP,
which excels in general cross-modal retrieval tasks. We adopt a
vision transformer (ViT (Dosovitskiy et al., 2021)) on the image
side. We elaborate first on how we contextualize the ViT, then
we detail the finetuning step. The model is illustrated in Fig. 3.
Contextualized Visual Representation: We inject different
types of contexts during the image encoding; global and local.
For global context, we inject different titles, while for local
one, we inject different ingredients. The titles and ingredients
are extracted from the image using our CLIP-based retrieval
approach (Sec. 3.1). During training, we inject different titles,
ingredients and different combination of them for each batch to
add more variability and some regularization during training.
To obtain the context tokens, we concatenate all context ele-
ments (all titles for global context or all ingredients for local one)
to form one sentence that is embedded using the Context Embed-
ding (CEmb) module (Fig. 3). CEmb consists of a light-weight
text encoder and a linear projection layer to project the textual
tokens to the space of the visual tokens. We inject the local
context early, in the input of the ViT (concatenation to the image
tokens), and the global one, later in its output (concatenation of
CLS token before the linear projection), where we have higher
abstraction level and more global representation. The forward
pass of the contextualized ViT can be expressed as follows:

x = ViT(Concat(iy, ... i, ¢} ...¢})) “4)

X = F(Concal(xcl.w Cil_y))

Where i, clj and cﬁ are the tokens of the image (k tokens), local
context (p tokens) and global context respectively. The cls
means the class token and F is a linear layer.

This is different from other food approaches that add only
global information (food category or class) later by concatenat-
ing it to the visual embedding (Xie et al., 2021a) or other ap-
proaches that concatenate object tags (OSCAR (Li et al., 2020c))
or visual concepts (VICHA (Shukor et al., 2022a)) only at the
input, without any distinction between local and global con-
texts. Our approach is also inspired by prompt tuning techniques
(Lester et al., 2021; Lu et al., 2022) where a couple of learnable
tokens are concatenated before the main text to adapt the frozen
model to a given task.
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Finetuning: We finetune the model on cross-modal food re-
trieval. During this stage, we inject the local and global contexts
(Sec 3.2). The model consists of a ViT, hierarchical recipe
encoder and a mulitmodal module (Shukor et al., 2022b), mainly
we train the model using Adamine triplet loss (Carvalho et al.,
2018) with incremental margin, in addition to the ITM loss as a
multimodal regularization at the output of the mulimodal mod-
ule. During test, we only use the unimodal encoders for fast
retrieval. The context is injected also during test.
Implementation details: the model consists of hierarchical
transformer encoders and decoders on the recipe side, a ViT-
B/16 on the image side and a multimodal module. For VLP, we
start by pretraining (with frozen ViT) with learning rate (Ir) of
le-5 and total batch size of 200 on 4 GPUs (50 per GPU) for 30
epochs. In the second finetuning stage on Recipe1M, we follow
the implementation details of other work (Shukor et al., 2022b).
We associate each image to 5 titles and 15 ingredients. During
training, we sample only 2 titles and 4 ingredients randomly
in each batch. The context is embedded by the first 2 layers
of the BERT (Devlin et al., 2018) encoder, followed by linear
projection (more details in the appendix).

4. Experiments

Datasets and metrics: We use several datasets; such as
RecipelM (Salvador et al., 2017) where each example con-
sists of a recipe (title, ingredients, instructions) and image
pair. RecipelM+ (Marin et al., 2019) that is an extension of
RecipelM with 13M images and 1M recipe, and Image and
Structured Text pairs (IST), which is our dataset constructed
with the STE module from 3 public datasets; COCO (Lin et al.,
2014), Visual Genome (Krishna et al., 2017) and SBU (Ordonez
et al., 2011) to form a total of 2M pairs including around 1M
different images. We follow previous works and report the recall
@1/5/10 in addition to RSUM which is the sum of the 3 recalls.

| 10k

| image-to-recipe

recipe-to-image

| Re1 R@5 R@I0 R@l R@5 R@IO

Adamine (Carvalho et al., 2018) 148 346 46.1 149 353 452
R2GAN (Zhu et al., 2019) 135 335 449 142 350 46.8
MCEN (Fu et al., 2020) 203 433 54.4 214 443 55.2
ACME (Wang et al., 2019) 229 468 57.9 244 479 59.0
SN (Zan et al., 2020) 221 459 56.9 234 473 579
IMHF (Li et al., 2021b) 234 482 584 249 483  59.4
Wang et. al (Wang et al., 2021a) 234 48.8 60.1 24.6 50.0 61.0
SCAN (Wang et al., 2021b) 237 493 60.6 253 50.6 61.6
HF-ICMA (Li et al., 2021¢) 240 516 65.4 256 548 673
MSIJE (Xie et al., 2021b) 256 521 63.8 262 525 64.1
SEJE (Xie et al., 2021c) 269 540 65.6 272 544 66.1
M-SIA (Li etal., 2021d) 292 550 66.2 303 556 66.5
DaC (Fain et al., 2019) 300 565 67.0 - -

X-MRS (Guerrero et al., 2021) 329  60.6 71.2 33.0 604 70.7
H-T (ViT) (Salvador et al., 2021) 335 621 72.8 337 622 72.7
T-Food (ViT) (Shukor et al., 2022b) 400  67.0 759 410 673 759
T-Food (CLIP-ViT) (Shukor et al., 2022b) | 43.4  70.7 79.7 446 712 79.7
VLPCook 453 724 808 464 731 809
VLPCook (RIM+) 467 733 833 478 741 81.8

Table 1: Comparison with other work. Recall@k (1) is reported
on the RecipelM test set. Our approaches (VLPCook) significantly
outperform all existing work. Best metrics are in bold, and next best
metrics are underlined.



4.1. Foundation Models in the Cooking Context.

Best SoTA results on general benchmarks are currently ob-
tained by finetuning foundation models, however, here we show
that for tasks requiring more complex input, such as food re-
trieval, this paradigm lags significantly behind existing food
models. To this end, we finetune on RecipelM for cross-modal
retrieval, considering 2 kinds of approaches; light fusion (CLIP)
and heavy fusion (ALBEF) approaches.

CLIP (Radford et al., 2021): Is trained contrastively on 400M
of image-text pairs and consists of a ViT-Base/16 as image
encoder and a transformer as text encoder.

ALBEF (Li et al., 2021a): s trained using ITC, ITM and MLM
losses on 14M images and their corresponding text. It consists
of a ViT-Base/16 on the image side, a BERT on the text side, in
addition to a multimodal decoder.

For both models, we change the word embedding layer, the
vocabulary, and maximum number of textual tokens to 300.
We train for 120 epochs with the two losses; Adamine triplet
with incremental margin, semantic regularization, and ITM (for
ALBEF). We use Adam optimizer and learning rate of 1le-5 (for
CLIP ViT we use Ir of 1e-6) and a total batch size of 80 and 56
for CLIP and ALBEF respectively. Tab. 2 shows that CLIP and
ALBEF give reasonable performance and outperform most of
the baselines (Tab. 1). However, and contrary to other general
benchmarks, their performance is still below SoTA food models.

image-to-recipe recipe-to-image
Model R@l R@5 R@I0 R@]l R@5 R@I10
X-MRS (Guerrero et al., 2021) 64.0 883 926 639 876 926
H-T (ViT) (Salvador et al., 2021)  64.2  89.1 934 645 893 93.8

T-Food (Shukor et al., 2022b) 682 879 913 683 878 915
CLIP 635 854 900 641 858 90.1
ALBEF 61.0 847 899 619 846 898

Table 2: Finetuning foundation models on RecipelM (1k setup).

4.2. VLPCook Results

Results on RecipelM. Tab. 1 shows that VLPCook significantly
outperforms current SOTA (+1.9 R@1) on the challenging 10k
setup. Importantly, the gap between VLPCook pretrained on
RecipelM+ and SoTA is even bigger (+3.4 R@1 on 10k). We
also show some qualitative results in Fig. 4. We can notice the
superiority of VLPCook compared to the current SOTA (Tfood
CLIP-ViT). Specifically, in the first example, VLPCook cor-
rectly retrieves the right image. In the second example, our
approach retrieves semantically similar images (Lasagna), while
for TFood, there are totally different plates (e.g. rice, pasta).

image-to-recipe recipe-to-image
R@l R@5 R@I0 R@l R@5 R@l0
17.0  38.0 48.0 170 420 54.0
T-Food * 443 750 83.60 450 755 839
T-Food (CLIP-ViT) * 465  76.8 854 46.8  77.0 85.2

VLPCook* ‘ 452 759 84.0 473 776 85.3

Marin et al. Marin et al. (2019)

Table 3: Comparison with other work. Recall @k (1) is reported on the
Recipel M+ test set (1k setup). Best metrics are in bold. VLPCook*
here is without VLP. *: we retrain these models on Recipe 1M +.

Results on RecipelM+. in Tab. 3, we show the first finetuning
results on Recipel M+ with interesting scores (more details in
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the appendix). Due to the large dataset size, we report the re-
sults of VLPCook without VLP (only with the context module).
The scores are almost multiplied by 3 compared to the baseline
(Marin et al., 2019). Moreover, we retrain the SOTA T-Food
models on this dataset and show significant improvment com-
pared to T-Fodd and comparable scores to T-Food (CLIP-ViT).
This reveal that our context module is more beneficial for lower
data regime (e.g., on Recipe M dataset) The low scores on this
challenging dataset makes it interesting to devise more complex
approaches in the future.

image-to-recipe recipe-to-image

Model R@l R@5 R@10 R@1 R@5 R@I0
VLPCook 736 905 933 747 907 932
w/o VSLP 723 906 934 736 908 935
w/o VSLP and CLIP-ViT 69.7 8.6 919 707 888 921

w/o VSLP and CLIP-ViT and Context 682 879 913 683 878 915

Table 4: Ablation Study. Both VSLP and Context module bring signifi-
cant improvement. Results on RecipelM test set (1k setup).

image-to-recipe recipe-to-image

Model R@l R@5 R@10 R@l R@5 R@10
Baseline (B) 682 879 913 683 878 915
B + VLP (w/o strcuture) 672 873 910 675 875 911
B + VSLP (Unfreeze Vis. Enc.) 67.6 873 913 676 872 909
B + VSLP (w/ VinVL tags) 688 883 91.8 699 883 917
B + VSLP (ours) 69.5 880 914 697 881 91.5

Table 5: Ablation study on VSLP. Different variants of VSLP. Results
on RecipelM test set (1k setup). Baseline corresponds to VLPCook
using ViT and without VSLP and the Context module.

4.3. Ablation Study of VLPCook

We report the scores on the 1k setup of RecipelM test set:
VLPCook (Sec. 3): In Tab. 4, we show the effect of our con-
tributions, mainly VLP and Context injection. We can notice
that each one brings significant improvement compared to the
baseline, as well as the combination of them. In addition, we
show different design choices for VLP in Tab.5. We can notice
that pretraining with structured text is better than traditional
VLP on plain text. Moreover, freezing the visual encoder and
using additional vinvl tags bring additional improvements.
Local and Global Context (Sec. 3.2): In Tab. 6, we do an ab-
lation on the type and the position of the injected context. We
notice that using only the ingredients (Ing) or titles (Ttl) (lines 2
and 3 Tab. 6) outperforms the baseline (line 1) without any con-
text. Moreover, using both contexts is always better, regardless
of their position. We also show that the best configuration is by
injecting the ingredients at the input to the visual encoder and
the titles at the output (line 5).

VSLP on the RecipelM+ Dataset Recipe M+ is the largest
dataset for food applications, however, to the best of our knowl-
edge, there is no work, besides the work that introduced this
dataset (Marin et al., 2019), that consider it for cross-modal
food retrieval. This might be due to, in addition to computation
resources needed, the poor generalization from Recipel M+ to
RecipelM as shown by the authors (Marin et al., 2019). Here



Barbecued Chicken Sandwiches
Title:

Barbecued Chicken Sandwiches

naise

Ingredients:

4 chicken breast halves, 8 slices provolone
cheese or 8 slices mozzarella cheese,

barbecue sauce, 8 slices lettuce,

Instructions:
Pound each chicken thin -- this helps it to
cook quickly.., Heat grill to medium and cook
chicken with barbecue sauce...

P a

No-Boil Cheesy Lasagna
(Vegetarian) With Optional Meat

No-Boil Cheesy Lasagna
Title: (Vegetarian) With Optional M
No-Boil Cheesy Lasagna (Vegetarian) With

Optional Meat Sauce

Ingredients:

8 ounces lasagna noodles, uncooked, 15
ounces ricotta cheese, 12 cup parmesan
cheese, grated, 2 eggs, 1 (26 ounce) jar ...
No-Boil Cheesy Lasagna
(Vegetarian) With Optional Meat

No-Boil Cheesy Lasagna
(Vegetarian) With Optional M
Sauce

A

~
Instructions:
Preheat oven to 350F, Combine ricotta,
parmesan, and eggs and mix well, In a 9x13
dish, spread about 1/3 of the sauce, ...

BLT Burger With Garlicky
Mayon

Barbecued Chicken Sandwiches ltalian Meatball Burger Pizza Burgers
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P
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Fig. 4: Recipe-to-image comparison on the RecipelM test set, 1k setup. TFood (first and third rows) vs. our VLPCook (second and fourth rows).

The image in green is the ground truth, followed by the top 4 retrieved imag
some finegrained details (type of meat) and most of the retrieved images ar

es in order. One can notice that our VLPCook approach better captures
e semantically similar.

Context Position RSUM RSUM

Ing tl Input Output 1K 10K RSUM
1 X X 495.00 367.10 862.10
2 v v 500.54 37143 871.97
3 4 4 498.61 372.16 870.77
4 v v/ /(ttl&Ing) 500.86 374.68 875.54
S5(urs) vV v (Ing) v(tt) 50175 374.30 876.05
6 v 7/ v (ttl) v(Ing) 501.79 37244 87423

Table 6: Ablation study on the context and injection position. Local
context (Ing) is better injected in the input of the ViT, and global one
(ttl) in the output.

we try to leverage this dataset, and assess its benefit during pre-
training. We pretrain several variants, for 30 epochs on all the
recipes of Recipel M+ (after excluding those in the validation
and test set of RecipelM) following the same implementation
details as Sec. 3 (except training using only 2 GPUs), and then
finetune these models on RecipelM. The results of Tab. 7 show
that Recipe 1M+ is more effective than our IST, however, the
latter contains only 1M images compared to 13M in the former,
and the images and recipes are in the same distribution of those
during finetuning. To fairly compare with IST, we also pretrain
on Recipe M+ by keeping only 10% of the images (i.e 1.3 im-
ages in average per recipe). Interestingly, we can notice from
Tab. 7 that pretraining on IST leads to better results.

4.4. Further Experiments

Food Recognition. Retrieval task is one of the best setups
to evaluate cross-modal alignment, on the other hand, there is
an established consensus in the community that cross-modal

image-to-recipe recipe-to-image

Model VSLP R@I R@5 R@I0 R@I R@5 R@I0
VLPCook w/o IST 69.8 892 927 709 896 927
CLIP-ViT RIM+ 710 893 927 719 896 927
IST 736 905 933 747 907 932
R Cook RIM+ 749 914 937 756 912 936
VLPCook RIM+ (13M1Im) 734 907 932 738 908 93.1

Table 7: VSLP on our IST dataset vs on RecipelM+ (R1M+).

alignment significantly helps solving multimodal downstream
tasks. To echo this finding, we test the benefit of VLP for Food
Recognition on Food101 (Bossard et al., 2014) and the large
ISIA Food500 (Min et al., 2020). We compare SoTA food
models to our VLPCooK pre-trained with VSLP, following the
linear probe setup on top of frozen ViTs. Table .8 below shows
very good results, e.g. we have a significant improvement in
accuracy for Food Recognition. This shows the ability of our
approach to generalize to other food tasks.

Food Recognition | ImageNet (ViT) H-T (ViT)  VLPCook (ViT)
Food101 80.99 84.44 89.14
ISIA Food500 52.34 57.562 60.30

Table 8: Linear regression classification on the test sets of Food101
and ISIA Food500. Backbone (ViT) kept frozen.

Beyond Computational Cooking: Medical Domain Our ap-
proach can be seamlessly adapted to other domains. To support
that, we consider the task of structured medical retrieval. We
experiment with Text-Image Retrieval for medical databases.
We use the large scale ROCO dataset (Pelka et al., 2018) that
consists of 81k radiology images and “reports” pairs, where the
report contains a caption, keywords, Unified Medical Language



Systems Concept Unique Identifiers (CUIs) and Semantic Types.
We consider the list of keywords and Semantic Types as “’ingre-
dients”, the caption as “instruction” and we extract the title from
the caption (Sec.3.1). Table 9, shows that our VSLP (VSLP)
lead to additional ~4 points of R@1 with respect to our baseline
(VLPCook). This shows the broader impact of our approach and
its benefits for domains and tasks requiring structured textual
input.

image-to-text text-to-image
Method PT | Rel R@5 R@I0 R@I R@5 R@IO
VLPCook @ | 1453 3820 5171 1508 39.03 51.83
VLPCook VSLP | 18.44 4278 5590 17.95 4251 55.06

Table 9: Our VSLP on ROCO Image-Text Medical Retrieval dataset.

5. Conclusion

In this work, we show the benefits of VSLP for Computational
Cooking. We also, successfully leverage pretrained foundation
models, to enrich the vision encoder with structured context.
These contributions led to a new SoTA for Cross-Modal Food
Retrieval. We show that this approach has a broader impact and
can be adopted for other computational cooking applications or
more general multimodal tasks, especially, those with complex
input, such as Medical databases.

Acknowledgments. This work was supported by ANR grant
VISA DEEP (ANR-20-CHIA-0022), and HPC resources of
IDRIS 2022-[AD011013415] made by GENCI.

References

Alayrac, J.B., Donahue, J., Luc, P,, Miech, A., Barr, 1., Hasson, Y., Lenc, K.,
Mensch, A., Millican, K., Reynolds, M., et al., 2022. Flamingo: a visual
language model for few-shot learning. arXiv preprint arXiv:2204.14198 .

Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Zitnick, C.L., Parikh,
D., 2015. Vga: Visual question answering, in: Proceedings of the IEEE
international conference on computer vision, pp. 2425-2433.

Azad, B., Azad, R., Eskandari, S., Bozorgpour, A., Kazerouni, A., Rekik, I., Mer-
hof, D., 2023. Foundational models in medical imaging: A comprehensive
survey and future vision. arXiv preprint arXiv:2310.18689 .

Biten, A.F., Gomez, L., Rusinol, M., Karatzas, D., 2019. Good news, everyone!
context driven entity-aware captioning for news images, in: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12466-12475.

Bossard, L., Guillaumin, M., Van Gool, L., 2014. Food-101 — mining discrimi-
native components with random forests, in: Fleet, D., Pajdla, T., Schiele, B.,
Tuytelaars, T. (Eds.), Computer Vision — ECCV 2014, Springer International
Publishing, Cham. pp. 446-461.

Carvalho, M., Cadene, R., Picard, D., Soulier, L., Thome, N., Cord, M., 2018.
Cross-modal retrieval in the cooking context: Learning semantic text-image
embeddings, in: The 41st International ACM SIGIR Conference on Research
& Development in Information Retrieval, pp. 35-44.

Celaj, A., Gao, A.J., Lau, T.T., Holgersen, E.M., Lo, A., Lodaya, V., Cole,
C.B., Denroche, R.E., Spickett, C., Wagih, O., Pinheiro, P.O., Vora, P.,
Mohammadi-Shemirani, P., Chan, S., Nussbaum, Z., Zhang, X., Zhu, H.,
Ramamurthy, E., Kanuparthi, B., Iacocca, M., Ly, D., Kron, K., Verby, M.,
Cheung-Ong, K., Shalev, Z., Vaz, B., Bhargava, S., Yusuf, F., Samuel, S.,
Alibai, S., Baghestani, Z., He, X., Krastel, K., Oladapo, O., Mohan, A.,
Shanavas, A., Bugno, M., Bogojeski, J., Schmitges, F., Kim, C., Grant, S.,
Jayaraman, R., Masud, T., Deshwar, A., Gandhi, S., Frey, B.J., 2023. An rna
foundation model enables discovery of disease mechanisms and candidate
therapeutics. bioRxiv doi:10.1101/2023.09.20.558508.

8

Chen, X., Wang, X., Changpinyo, S., Piergiovanni, A., Padlewski, P., Salz, D.,
Goodman, S., Grycner, A., Mustafa, B., Beyer, L., et al., 2022. Pali: A jointly-
scaled multilingual language-image model. arXiv preprint arXiv:2209.06794

Chen, Y.C., Li, L., Yu, L., El Kholy, A., Ahmed, F., Gan, Z., Cheng, Y., Liu,
J.,2020. Uniter: Universal image-text representation learning, in: European
conference on computer vision, Springer. pp. 104-120.

Cooray, T., Cheung, N.M., Lu, W., 2020. Attention-based context aware reason-
ing for situation recognition, in: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR).

Couairon, G., Grechka, A., Verbeek, J., Schwenk, H., Cord, M., 2022. Flexit: To-
wards flexible semantic image translation, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 18270-18279.

Devlin, J., Chang, M.W., Lee, K., Toutanova, K., 2018. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 .

Ding, S., Lin, L., Wang, G., Chao, H., 2015. Deep feature learning with relative
distance comparison for person re-identification. Pattern Recognition 48,
2993-3003.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Un-
terthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit,
J., Houlsby, N., 2021. An image is worth 16x16 words: Transformers for
image recognition at scale, in: International Conference on Learning Repre-
sentations. URL: https://openreview.net/forum?id=YicbFdNTTy.

Dou, Z.Y., Xu, Y., Gan, Z., Wang, J., Wang, S., Wang, L., Zhu, C., Liu, Z.,
Zeng, M., et al., 2021. An empirical study of training end-to-end vision-and-
language transformers. arXiv preprint arXiv:2111.02387 .

Dou, Z.Y., Xu, Y., Gan, Z., Wang, J., Wang, S., Wang, L., Zhu, C., Zhang,
P, Yuan, L., Peng, N., et al., 2022. An empirical study of training end-to-
end vision-and-language transformers, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 18166-18176.

Fain, M., Twomey, N., Ponikar, A., Fox, R., Bollegala, D., 2019. Dividing and
conquering cross-modal recipe retrieval: from nearest neighbours baselines
to sota. arXiv preprint arXiv:1911.12763 .

Fu, H., Wu, R, Liu, C., Sun, J., 2020. Mcen: Bridging cross-modal gap between
cooking recipes and dish images with latent variable model, in: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 14570-14580.

Gao, H., Li, Y., Long, K., Yang, M., Shen, Y., 2024. A survey for foundation
models in autonomous driving. arXiv preprint arXiv:2402.01105 .

Guerrero, R., Pham, H.X., Pavlovic, V., 2021. Cross-modal retrieval and syn-
thesis (x-mrs): Closing the modality gap in shared subspace learning, in:
Proceedings of the 29th ACM International Conference on Multimedia, pp.
3192-3201.

Huang, X., Liu, J., Zhang, Z., Xie, Y., 2023. Improving cross-modal recipe
retrieval with component-aware prompted clip embedding, in: Proceedings of
the 31st ACM International Conference on Multimedia, Association for Com-
puting Machinery, New York, NY, USA. p. 529-537. URL: https://doi.
org/10.1145/3581783.3612193, doi:10.1145/3581783.3612193.

Jia, C., Yang, Y., Xia, Y., Chen, Y.T., Parekh, Z., Pham, H., Le, Q., Sung, Y.H.,
Li, Z., Duerig, T., 2021. Scaling up visual and vision-language representation
learning with noisy text supervision, in: International Conference on Machine
Learning, PMLR. pp. 4904-4916.

Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K., Kravitz, J., Chen, S.,
Kalantidis, Y., Li, L.J., Shamma, D.A., et al., 2017. Visual genome: Con-
necting language and vision using crowdsourced dense image annotations.
International journal of computer vision 123, 32-73.

Lester, B., Al-Rfou, R., Constant, N., 2021. The power of scale for parameter-
efficient prompt tuning, in: Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pp. 3045-3059.

Li, J., Li, D., Xiong, C., Hoi, S., 2022a. Blip: Bootstrapping language-image
pre-training for unified vision-language understanding and generation. arXiv
preprint arXiv:2201.12086 .

Li, J., Selvaraju, R., Gotmare, A., Joty, S., Xiong, C., Hoi, S.C.H., 2021a. Align
before fuse: Vision and language representation learning with momentum
distillation. Advances in Neural Information Processing Systems 34.

Li, J., Sun, J., Xu, X., Yu, W., Shen, F., 2021b. Cross-modal image-recipe re-
trieval via intra- and inter-modality hybrid fusion, in: Proceedings of the 2021
International Conference on Multimedia Retrieval, Association for Comput-
ing Machinery, New York, NY, USA. p. 173-182. URL: https://doi.
org/10.1145/3460426.3463618, doi:10.1145/3460426.3463618.

Li, J., Xu, X., Yu, W,, Shen, F., Cao, Z., Zuo, K., Shen, H.T., 2021c. Hybrid



Fusion with Intra- and Cross-Modality Attention for Image-Recipe Retrieval.
Association for Computing Machinery, New York, NY, USA. p. 244-254.
URL: https://doi.org/10.1145/3404835.3462965.

Li, L., Hu, C., Zhang, H., Maradapu Vera Venkata sai, A., 2024. Cross-modal
image-recipe retrieval via multimodal fusion, in: Proceedings of the 5th ACM
International Conference on Multimedia in Asia, Association for Computing
Machinery, New York, NY, USA. URL: https://doi.org/10.1145/
3595916.3626389, doi:10.1145/3595916.3626389.

Li, L., Li, M., Zan, Z., Xie, Q., Liu, J., 2021d. Multi-Subspace Implicit
Alignment for Cross-Modal Retrieval on Cooking Recipes and Food Images.
Association for Computing Machinery, New York, NY, USA. p. 3211-3215.
URL: https://doi.org/10.1145/3459637 .3482149.

Li, M., Xu, R., Wang, S., Zhou, L., Lin, X., Zhu, C., Zeng, M., Ji, H., Chang,
S.F., 2022b. Clip-event: Connecting text and images with event structures, in:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 16420-16429.

Li, M., Zareian, A., Lin, Y., Pan, X., Whitehead, S., Chen, B., Wu, B., Ji,
H., Chang, S.F., Voss, C., Napierski, D., Freedman, M., 2020a. GAIA: A
fine-grained multimedia knowledge extraction system, in: Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics:
System Demonstrations, Association for Computational Linguistics, Online.
pp. 77-86. URL: https://aclanthology.org/2020.acl-demos. 11,
doi:10.18653/v1/2020.acl-demos.11.

Li, M., Zareian, A., Zeng, Q., Whitehead, S., Lu, D., Ji, H., Chang, S.F., 2020b.
Cross-media structured common space for multimedia event extraction, in:
Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics, Association for Computational Linguistics, Online. pp.
2557-2568. URL: https://aclanthology.org/2020.acl-main.230,
doi:10.18653/v1/2020.acl-main. 230.

Li, X., Yin, X., Li, C., Zhang, P,, Hu, X., Zhang, L., Wang, L., Hu, H., Dong, L.,
Wei, F,, et al., 2020c. Oscar: Object-semantics aligned pre-training for vision-
language tasks, in: European Conference on Computer Vision, Springer. pp.
121-137.

Li, Z., Fan, Z., Tou, H., Wei, Z., 2022c. Mvp: Multi-stage vision-language pre-
training via multi-level semantic alignment. arXiv preprint arXiv:2201.12596

Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar,
P, Zitnick, C.L., 2014. Microsoft coco: Common objects in context, in:
European conference on computer vision, Springer. pp. 740-755.

Liu, E, Chen, D., Guan, Z., Zhou, X., Zhu, J., Zhou, J., 2023. Remoteclip:
A vision language foundation model for remote sensing. arXiv preprint
arXiv:2306.11029 .

Lu, Y, Liu, J., Zhang, Y., Liu, Y., Tian, X., 2022. Prompt distribution learning, in:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 5206-5215.

Marin, J., Biswas, A., Ofli, F., Hynes, N., Salvador, A., Aytar, Y., Weber,
1., Torralba, A., 2019. Recipelm+: A dataset for learning cross-modal
embeddings for cooking recipes and food images. IEEE transactions on
pattern analysis and machine intelligence 43, 187-203.

Martinel, N., Piciarelli, C., Micheloni, C., Foresti, G.L., 2015. A structured
committee for food recognition, in: 2015 IEEE International Conference on

Computer Vision Workshop (ICCVW), pp. 484-492. doi:10.1109/ICCVW.

2015.70.

Min, W, Liu, L., Wang, Z., Luo, Z., Wei, X., Wei, X., Jiang, S., 2020. Isia
food-500: A dataset for large-scale food recognition via stacked global-local
attention network, in: Proceedings of the 28th ACM International Conference
on Multimedia, pp. 393-401.

Myers, A., Johnston, N., Rathod, V., Korattikara, A., Gorban, A., Silberman, N.,
Guadarrama, S., Papandreou, G., Huang, J., Murphy, K., 2015. Im2calories:
Towards an automated mobile vision food diary, in: 2015 IEEE International
Conference on Computer Vision (ICCV), pp. 1233-1241. doi:10.1109/
ICCV.2015.146.

Ofli, F.,, Aytar, Y., Weber, 1., Al Hammouri, R., Torralba, A., 2017. Is saki#
delicious? the food perception gap on instagram and its relation to health, in:
Proceedings of the 26th International Conference on World Wide Web, pp.
509-518.

Oord, A.v.d., Li, Y., Vinyals, O., 2018. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748 .

Ordonez, V., Kulkarni, G., Berg, T.L., 2011. Im2text: Describing images using
1 million captioned photographs, in: Proceedings of the 24th International
Conference on Neural Information Processing Systems, Curran Associates
Inc., Red Hook, NY, USA. p. 1143-1151.

9

Papadopoulos, D.P., Mora, E., Chepurko, N., Huang, K.W., Ofli, F., Torralba,
A., 2022. Learning program representations for food images and cooking
recipes, in: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 16559-16569.

Pelka, O., Koitka, S., Riickert, J., Nensa, E,, Friedrich, C.M., 2018. Radiol-
ogy objects in context (roco): a multimodal image dataset, in: Intravascular
Imaging and Computer Assisted Stenting and Large-Scale Annotation of
Biomedical Data and Expert Label Synthesis: 7th Joint International Work-
shop, CVII-STENT 2018 and Third International Workshop, LABELS 2018,
Held in Conjunction with MICCAI 2018, Granada, Spain, September 16,
2018, Proceedings 3, Springer. pp. 180-189.

Plummer, B.A., Wang, L., Cervantes, C.M., Caicedo, J.C., Hockenmaier, J.,
Lazebnik, S., 2015. Flickr30k entities: Collecting region-to-phrase corre-
spondences for richer image-to-sentence models, in: Proceedings of the IEEE
international conference on computer vision, pp. 2641-2649.

Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry,
G., Askell, A., Mishkin, P., Clark, J., et al., 2021. Learning transferable visual
models from natural language supervision, in: International Conference on
Machine Learning, PMLR. pp. 8748-8763.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M., 2022. Hierar-
chical text-conditional image generation with clip latents. arXiv preprint
arXiv:2204.06125 .

Salvador, A., Gundogdu, E., Bazzani, L., Donoser, M., 2021. Revamping cross-
modal recipe retrieval with hierarchical transformers and self-supervised
learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 15475-15484.

Salvador, A., Hynes, N., Aytar, Y., Marin, J., Ofli, F., Weber, 1., Torralba,
A., 2017. Learning cross-modal embeddings for cooking recipes and food
images, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

Sara, S., Cornia, M., Baraldi, L., Cucchiara, R., 2022. Retrieval-augmented
transformer for image captioning, in: 19th International Conference on
Content-based Multimedia Indexing.

Schuhmann, C., Vencu, R., Beaumont, R., Kaczmarczyk, R., Mullis, C., Katta,
A., Coombes, T., Jitsev, J., Komatsuzaki, A., 2021. Laion-400m: Open dataset
of clip-filtered 400 million image-text pairs. arXiv preprint arXiv:2111.02114

Schuster, S., Krishna, R., Chang, A., Fei-Fei, L., Manning, C.D., 2015. Gen-
erating semantically precise scene graphs from textual descriptions for im-
proved image retrieval, in: Proceedings of the Fourth Workshop on Vi-
sion and Language, Association for Computational Linguistics, Lisbon,
Portugal. pp. 70-80. URL: https://aclanthology.org/W15-2812,
doi:10.18653/v1/W15-2812.

Sharma, P., Ding, N., Goodman, S., Soricut, R., 2018. Conceptual captions: A
cleaned, hypernymed, image alt-text dataset for automatic image captioning,
in: ACL.

Shen, S., Li, L.H., Tan, H., Bansal, M., Rohrbach, A., Chang, K.W., Yao,
Z., Keutzer, K., 2022. How much can CLIP benefit vision-and-language
tasks?, in: International Conference on Learning Representations. URL:
https://openreview.net/forum?id=zf_L13HZWgy.

Shukor, M., Couairon, G., Cord, M., 2022a. Efficient vision-language pretraining
with visual concepts and hierarchical alignment, in: 33rd British Machine
Vision Conference (BMVC).

Shukor, M., Couairon, G., Grechka, A., Cord, M., 2022b. Transformer de-
coders with multimodal regularization for cross-modal food retrieval, in:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4567-4578.

Shukor, M., Dancette, C., Cord, M., 2023. ep-alm: Efficient perceptual augmen-
tation of language models. arXiv preprint arXiv:2303.11403 .

Singh, A., Hu, R., Goswami, V., Couairon, G., Galuba, W., Rohrbach, M., Kiela,
D., 2021. Flava: A foundational language and vision alignment model. arXiv
preprint arXiv:2112.04482 .

Song, F.,, Zhu, B., Hao, Y., Wang, S., He, X., 2023. Car: Consolidation, augmen-
tation and regulation for recipe retrieval. arXiv preprint arXiv:2312.04763

Su, W., Zhu, X., Cao, Y., Li, B., Lu, L., Wei, E, Dai, J., 2019. Vl-bert:
Pre-training of generic visual-linguistic representations, in: International
Conference on Learning Representations.

Suhail, M., Sigal, L., 2019. Mixture-kernel graph attention network for situation
recognition, in: Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV).

Wang, H., Lin, G., Hoi, S.C., Miao, C., 2021a. Learning structural rep-



resentations for recipe generation and food retrieval. arXiv preprint
arXiv:2110.01209 .

Wang, H., Sahoo, D., Liu, C., Lim, E.p., Hoi, S.C., 2019. Learning cross-
modal embeddings with adversarial networks for cooking recipes and food
images, in: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 11572—11581.

Wang, H., Sahoo, D., Liu, C., Shu, K., Achananuparp, P., Lim, E.p., Hoi,
C.S., 2021b. Cross-modal food retrieval: learning a joint embedding of
food images and recipes with semantic consistency and attention mechanism.
IEEE Transactions on Multimedia .

Wang, P, Yang, A., Men, R, Lin, J., Bai, S., Li, Z., Ma, J., Zhou, C.,
Zhou, J., Yang, H., 2022a. Unifying architectures, tasks, and modalities
through a simple sequence-to-sequence learning framework. arXiv preprint
arXiv:2202.03052 .

Wang, W., Bao, H., Dong, L., Bjorck, J., Peng, Z., Liu, Q., Aggarwal, K.,
Mohammed, O.K., Singhal, S., Som, S., et al., 2022b. Image as a foreign
language: Beit pretraining for all vision and vision-language tasks. arXiv
preprint arXiv:2208.10442 .

Weinberger, K.Q., Blitzer, J., Saul, L., 2005. Distance metric learning for
large margin nearest neighbor classification, in: Weiss, Y., Scholkopf, B.,
Platt, J. (Eds.), Advances in Neural Information Processing Systems, MIT
Press. URL: https://proceedings.neurips.cc/paper/2005/file/
a7£592cef8b130a6967290617db5681b-Paper . pdf.

Xie, Z., Liu, L., Li, L., Zhong, L., 2021a. Learning joint embedding with
modality alignments for cross-modal retrieval of recipes and food images, in:
Proceedings of the 30th ACM International Conference on Information &
Knowledge Management, pp. 2221-2230.

Xie, Z., Liu, L., Wu, Y., Li, L., Zhong, L., 2021b. Learning tfidf enhanced joint
embedding for recipe-image cross-modal retrieval service. IEEE Transactions
on Services Computing .

Xie, Z., Liu, L., Wu, Y., Zhong, L., Li, L., 2021c. Learning text-image joint
embedding for efficient cross-modal retrieval with deep feature engineering.
ACM Transactions on Information Systems (TOIS) 40, 1-27.

Yu, J., Wang, Z., Vasudevan, V., Yeung, L., Seyedhosseini, M., Wu, Y., 2022.
Coca: Contrastive captioners are image-text foundation models. arXiv
preprint arXiv:2205.01917 .

Zan, Z., Li, L., Liu, J., Zhou, D., 2020. Sentence-Based and Noise-Robust
Cross-Modal Retrieval on Cooking Recipes and Food Images. Association
for Computing Machinery, New York, NY, USA. p. 117-125. URL: https:
//doi.org/10.1145/3372278.3390681.

Zhai, X., Wang, X., Mustafa, B., Steiner, A., Keysers, D., Kolesnikov, A.,
Beyer, L., 2022. Lit: Zero-shot transfer with locked-image text tuning, in:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 18123-18133.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M., Chen, S., Dewan, C.,
Diab, M., Li, X., Lin, X.V,, et al., 2022. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068 .

Zhu, B., Ngo, C.W., 2020. Cookgan: Causality based text-to-image synthesis, in:
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 5518-5526. doi:10.1109/CVPR42600.2020.00556.

Zhu, B., Ngo, C.W., Chen, J., Hao, Y., 2019. R2gan: Cross-modal recipe re-
trieval with generative adversarial network, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).



Research Highlights (Required)

To create your highlights, please type the highlights against each \item command.

It should be short collection of bullet points that convey the core findings of the article. It should include 3 to 5 bullet points
(maximum 85 characters, including spaces, per bullet point.)

o Existing general foundation models underperoform on computaional cooking tasks.
e Domain specific applications need more adapted pretraining approaches.

e Adapting existing general datasets of image-text pairs to be closer to food data.

e Vision Language Pretraining on adapted datasets helps cooking downstream tasks.

e Foundation models can be leveraged for Food models by injecting external knowledge.
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