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A B S T R A C T

Leveraging unlabeled examples is a crucial issue for boosting performances in semi-supervised learning. In this
work, we introduce the SAMOSA framework based on semantic augmentation for mixing semantic components
from labeled examples and non semantic characteristics from unlabeled data. Our approach is based on a
novel reconstruction module that can be grafted onto most state of the art networks. The proposed approach
leans on two main aspects: an architectural component optimized to disentangle semantic and auxiliary non
semantic representations using an unsupervised loss, and a semantic augmentation scheme that leverages
this disentangling module to generate artificially labeled examples preserving known class information while
controlling auxiliary variations. We demonstrate the ability of our method to improve the performance of
models trained according to standard semi-supervised procedures Mean Teacher (Tarvainen and Valpola, 2017)
MixMatch (Berthelot et al., 2019) and FixMatch (Sohn et al., 2020).
1. Introduction

Deep architectures have proven capable of reliably solving a variety
of tasks such as classification [1,2], object detection [3] or machine
translation [4]. This is however contingent on there being a large
amount of labeled data to train models in a supervised fashion. This
is seldom the case in practical applications where labeling comes at a
significant cost.

A more realistic setting is defined by Semi-Supervised Learning
(SSL), where some labeled data is provided but most of the avail-
able data is unlabeled. The unlabeled data has been leveraged to
improve model performance, most notably through the use of consis-
tency based methods [5–7]. Consistency based methods guide models
towards solution stable with regard to small perturbations around
samples. Recently, mixing augmentations – which mix (Fig. 1(a)) two
samples/label pairs by interpolating samples and labels – have been
used to great success [8–11] in SSL by combining labeled sample/label
pairs and unlabeled sample/pseudotarget pairs.

Mixing augmentations present an interesting data augmentation
paradigm in that they can be used to create new samples, something
particularly appealing in low label settings. However, most mixing
augmentations tend to mix semantic content from both parent samples
which leads to the creation of between class samples (Fig. 1(a)). In
fact, this justifies the use of soft targets in mixing augmentations
and explains their regularizing effect observed both empirically and
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theoretically [12–14]. While this is a desirable effect, this prevents the
generation of ‘‘true’’ samples.

We propose in this paper to create artificial labeled samples that
only inherit the label of one parent through mixing (Fig. 1(b)). This
could be used to expand the limited pool of labeled samples in semi-
supervised learning. By mixing the semantic content from available
samples with the non-semantic content (or ‘‘context’’) of unlabeled
samples, such an augmentation method could help further leverage the
many unlabeled samples provided in semi-supervised learning.

The main challenge when performing such mixing lies in the proper
separation of semantic and non-semantic content. We propose a novel
neural architecture that separates input information into semantic in-
formation useful to a classifier, and auxiliary information necessary
for reconstruction. Furthermore, our SAMOSA framework leverages
its novel asymmetrical decoder (inspired by work in generative mod-
eling and edition [15,16]) to mix any two extracted semantic and
non-semantic content. Fig. 1(b) shows how SAMOSA combines a bird
picture with color tones from a plane picture.

We develop three main contributions in this paper (1) A novel
learning scheme and architecture – SAMOSA – that separates semantic
components from non semantic components in inputs and can be
grafted on top of most pre-existing SSL methods to improve classifiers
(2) A new mixing data augmentation for Semi-Supervised Learning that
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Fig. 1. While classical mixing combines general content (i.e. semantic ’’S’’ + non-semantic ‘‘NS’’) from both parents, SAMOSA clearly mixes semantic content (‘‘S’’) from one parent
and non semantic content (‘‘NS’’) from the other.
can mix the semantic content of labeled samples with non-semantic
information of unlabeled samples (3) A thorough experimental vali-
dation of how the methods developed in this paper can be used to
improve three well established Semi Supervised Learning algorithms:
Mean Teacher [6], MixMatch [8] and FixMatch [17].

After discussing the relevant literature in Semi-Supervised Learning
and Data Augmentation (Section 2), we introduce our SAMOSA Frame-
work and elaborate on how it can be used in Semi-Supervised Learning
(Section 3). Finally, we validate experimentally the performance of our
SAMOSA Framework in Section 4

Notations. We refer in this paper to neural networks as capitalized
letters (e.g. C for a classifier). Layers in a neural network are noted
using an exponent (e.g. 𝐶 (𝑖) refers to 𝑖th layer of C), successive layers
are discussed using a range exponent (e.g. 𝐶 (𝑖..𝑗) refers to the 𝑖th to
jth layers of C). In general, samples are named using letter 𝑥, labels
using letter 𝑦 and 𝑧 refers to latent variables. The ⊙ operator refers to
Hadamard product, ◦ is used to denote function composition.

2. Semi-supervised learning and hybridization

We first introduce the semi-supervised problem before providing a
quick overview of the relevant literature. In semi-supervised learning,
the dataset  = 𝑙 ∪𝑢 contains two sub-datasets: a labeled 𝑙 dataset
and an unlabeled 𝑢 dataset. At the core of semi-supervised learning
therefore lies the question of how to find ways to leverage 𝑢 to extract
information relevant to the task of interest.

This has been achieved in a number of ways, ranging from genera-
tive modeling [18] to graph based methods [19,20]. While generative
models have mostly relied on unsupervised generative training [18],
label propagation methods have been used in a number of graph
based methods to infer labels for unlabeled data [19]. In general,
pseudo-labeling [17,19] has been used to guess labels for unlabeled
samples [21–23], often paired with entropy minimization techniques
to improve model confidence [8]. Recent advances in self-supervised
learning are often hijacked for Semi-Supervised Learning by jointly per-
forming supervised training with labeled samples and self-supervised
learning on unlabeled samples [22,24] However, deep networks have
most notably leveraged unlabeled data through the use of consistency
losses [5,6] that stabilize network predictions. Early solutions explored
perturbing input samples [5], model predictions [5] or even the model
itself [6]. More recently, more disruptive mixing data augmentation
techniques have proven very effective for consistency based training [8,
9,11].
2

Mixing data augmentations. [12] introduced the idea of mixing content
from two samples 𝑥1 and 𝑥2 to generate new samples to train a classifier
on. In the original work, pairs of samples are drawn and a new sample
as a linear interpolation between the pixel values of the parent samples
according to a certain ratio. Formally, given two sample/label pairs
𝑥1, 𝑦1, 𝑥2, 𝑦2, MixUp generates a new sample 𝑥′ = 𝜆𝑥1 + (1 − 𝜆)𝑥2 and
label 𝑦′ = 𝜆𝑦1 + (1 − 𝜆)𝑦2 for some 𝜆 ∈ [0, 1] drawn from a symmetric
beta distribution.

Subsequent work on mixing augmentations has mostly focused on
two main aspects: how the mixing is performed (in terms of math-
ematical operations) and on what features the mixing is performed
(e.g. pixels vs. model features). CutMix took inspiration from another
recent augmentation method – CutOut – by drawing a rectangular mask
𝑀 ∈ {0; 1}𝐻×𝑊 with values 1 inside a rectangle zone and 0. Parent
samples are combined by CutMix as 𝑥′ = 𝑀 ⊙ 𝑥1 + (1 − 𝑀) ⊙ 𝑥2. Put
simply, a small patch from 𝑥2 is pasted onto 𝑥1. This formalism has
been further extended with more complex masks [25] and the use of
saliency maps to guide mask selection [26].

[27] proposed performing MixUp between intermediate represen-
tations of a classifier to ensure both parent sample provide relevant
content. By embedding 𝑥1 and 𝑥2 in the latent space of a classifier
before mixing, [27] observed significant gains in the regularizing abil-
ity of mixing augmentations. This line of attack has since then been
extended to use more complex mixing operations [28].

In both cases, the focus of the subsequent work has clearly leaned
towards ensuring semantic content from both parent samples is present
in the mixed sample. Conversely, our method provides an alternative
tool where we can mix the semantic content of one sample with the
non-semantic content from another. Mixed samples generated from
this method could be especially useful in semi-supervised learning,
as traditional mixed samples have already been used to great effect
in semi-supervised learning. Concurrently to this work, SciMix [29]
proposed to mix semantic and non-semantic contents but introduced
explicit hybridization objectives contrarily to our approach which lets
non-semantic influences emerge on their own.

Mixing augmentations in semi-supervised learning. MixUp, along with
other mixing augmentation methods, has been used to mix labeled
samples from 𝑙 and unlabeled samples from 𝑢 [8,9,11]. In general,
existing approaches have relied on generating pseudo targets for un-
labeled samples before performing MixUp using the inferred pseudo
targets. Interpolation consistency training [11] extend the notion of
consistency targets by using MixUp on the consistency targets and
inputs. MixMatch and ReMixMatch [8,9] further extended this idea by



Pattern Recognition 145 (2024) 109909R. Sun et al.
considering pseudo-labels for unlabeled samples instead of consistency
targets.

Building upon the idea of mixing samples, we propose in this paper
to work on ‘‘hybrid’’ samples that associate semantic content of one
(labeled) sample and auxiliary non semantic characteristics of another
(Fig. 1(b)), as well as directly transfer the one-hot label target (0 1).
This is in contrast to MixUp which would simply average entire input
images (Fig. 1(a) for 𝜆 = 0.5). This however requires being able to
separate semantic content from auxiliary non semantic content.

Separating semantic information from irrelevant information. Input recon-
struction or generation has been used to leverage unlabeled data [18,
30] to improve the features of classifiers. [30] however points out that
classifiers aim to be invariant to non-semantic information that would
be required for accurate reconstruction. If, for instance, we sought to
classify images of numbers on colored backgrounds, color would be
required to reconstruct the images but would be superfluous noise
to a classifier. Separation of semantic and non-semantic information
in [30] fails to truly differentiate between the two modalities, which we
address in this work through the use of a special decoder architecture.

This idea of separating semantic from non-semantic content has
previously been studied in multiple domains such as Domain Gener-
alization [31,32] (where a model is trained to transfer well to any new
domain) or unsupervised image to image translation [33,34] (where a
model learns to modify pictures to take on new characteristics in an
unsupervised fashion). In most cases however, non-semantic informa-
tion is either simply discarded in the case of Domain Generalization or
treated mostly as a general content vs. domain issue in unsupervised
image to image translation. Like in Domain Generalization techniques,
we need to isolate class specific information but we also need to
re-synthesize hybrid images like in image-to-image translation where
simpler concepts are usually manipulated. This means no easy parallel
can be drawn for such techniques in Semi-Supervised Learning: we
cannot separate unlabeled data into different domains like in Domain
Generalization and there is absolutely no semantic notion to work with
in unsupervised image-to-image translation frameworks.

Our work therefore aims to create an encoder decoder system that
separates mostly independent semantic and non-semantic component.
In particular, we seek to leverage such a disentangled hybrid generation
process for semantically consistent mixing augmentation.

3. SAMOSA

We detail in this section our proposed SAMOSA Framework. After
a brief overview of the general framework, we give a detailed account
of our novel asymmetrical decoder in Section 3.1 and detail SAMOSA’s
atypical learning scheme in Section 3.2. Finally, we discuss how our
SAMOSA framework can be used in a SSL setting in Section 3.3.

First and foremost, we introduce in this paper a novel architecture
presented in Fig. 2. It is composed of two encoders 𝐸𝑐 and 𝐸𝑟 (one
semantic – with regards to the classification process – and one non
semantic), a simple classifier 𝐶 and a bi-modal decoder 𝐷 that takes
inputs from a semantic modality 𝑧𝑐 and a non-semantic modality 𝑧𝑟.
SAMOSA is meant to be added on top of existing semi-supervised
learning algorithms for neural architectures. In this sense, an input 𝑥 is
mapped to a feature representation 𝑧𝑐 = 𝐸𝑐 (𝑥), which is then used to
obtain a classifier prediction 𝑦̂ = 𝐶(𝑧𝑐 ) = 𝐶(𝐸𝑐 (𝑥)). We further elaborate
on the peculiarities of our additional reconstruction modules 𝐸𝑟 and 𝐷
in Section 3.1.

To train such an architecture, we optimize the modules neces-
sary for classification (𝐸𝑐 and 𝐶) to minimize a two component loss
𝑆𝐴𝑀𝑂𝑆𝐴 (Eq. (1), Fig. 2). Our novel regularizer 𝛺𝑆𝐴𝑀𝑂𝑆𝐴 (in Eq. (1))
differs substantially from standard reconstruction regularizers by lever-
aging peculiarities of SAMOSA’s architecture. On the other hand, the
base loss 0,𝑋 term in Eq. (1) acts as a proxy to represent the base
method (which we seek to improve) ‘‘X’’’s training process (see Fig. 2).
3

Fig. 2. Overview of the SAMOSA framework. 𝑧𝑐 and 𝑧𝑟 are extracted from input 𝑥. 𝑧𝑐
alone is used to classify the input (to optimize the base 0,𝑋 loss). 𝑥̂ (which reconstructs
𝑥 due to 𝛺𝑆𝐴𝑀𝑂𝑆𝐴 ’s sub-loss 𝑟𝑒𝑐 ) is computed from both extracted features 𝑧𝑐 and 𝑧𝑟.
𝐸𝑐 is regularized by the learned decoder (through the 𝛺𝑟𝑒𝑐 regularizer of 𝛺𝑆𝐴𝑀𝑂𝑆𝐴).

For instance, the three base losses we considered are 0,𝑀𝑇 from Mean
Teacher [6], 0,𝑀𝑖𝑥 from MixMatch [8] and 0,𝐹 𝑖𝑥 from FixMatch [17].
As the basic algorithms we consider are meant to function on standard
classifier models, 0,𝑋 is only minimized for 𝐸𝑐 ◦ 𝐶. The training
and manipulation of the remaining modules as well as the regularizer
term 𝛺𝑆𝐴𝑀𝑂𝑆𝐴 are specific to SAMOSA, and are elaborated upon in
Section 3.2.
𝑆𝐴𝑀𝑂𝑆𝐴({𝑥𝑙 , 𝑦𝑙}𝑙

∪ {𝑥𝑢}𝑢
) = 0,𝑋 ({𝑥𝑙 , 𝑦𝑙} ∪ {𝑥𝑢})

+ 𝛺𝑆𝐴𝑀𝑂𝑆𝐴({𝑥𝑙} ∪ {𝑥𝑢}).
(1)

As such, the method trains a standard classifier 𝐸𝑐◦𝐶 according to a
base SSL method X with loss 0,𝑋 . Our contribution consists in adding a
reconstruction regularizer 𝛺𝑆𝐴𝑀𝑂𝑆𝐴, a non-semantic encoder 𝐸𝑟 and a
special bi-modal decoder 𝐷 to be optimized and trained simultaneously
with the base SSL classifier. The bi-modal decoder in particular requires
careful design to mix semantic and non-semantic content.

3.1. Adding a non-supervised reconstruction module

Our goal is to mix the semantic content of one sample with the
non-semantic content of another. This requires both separating the
two contents from samples and reconstructing from those contents
in a modular fashion. To some extent, this has been achieved in
style transfer [15] and generative modeling [16]. [15,16] for instance
have shown manipulating activation statistics of intermediate activa-
tion maps in an autoencoder can be used to train a model capable of
reconstructing an input image in a number of different ways. Those
methods however either explicitly define what ‘‘style’’ (which we liken
to non semantic information) is through a specifically designed loss
functions and targets [15], or perform adversarial optimization that
does not allow for specific reconstructions [16]. We propose here an
architecture operating along similar principles, but that can reconstruct
inputs without any pre-conception of what constitutes non-semantic
information.

We retain the base model’s 𝐸𝑐 as our semantic encoder, and add
a separate encoder 𝐸𝑟 for the remaining non-semantic information. A
novel asymmetrical bi-modal decoder 𝐷 is then used to reconstruct the
input images from the outputs of the encoders 𝐸𝑐 and 𝐸𝑟. Practically, an
input 𝑥 is mapped to an additional non semantic feature representation
𝑧𝑟 = 𝐸𝑟(𝑥), which is then used in conjunction with 𝑧𝑐 to obtain a recon-
structed image 𝑥̂ = 𝐷(𝑧𝑐 , 𝑧𝑟) = 𝐷(𝐸𝑐 (𝑥), 𝐸𝑟(𝑥)). This last reconstruction
process is facilitated by the very peculiar structure of 𝐷.
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Fig. 3. Our proposed asymmetrical decoder 𝐷 reconstructs x from 𝑧𝑐 , with 𝑧𝑟
modulating which parts of 𝐷 are active.

Asymmetrical decoder D. Crucially, we design a novel decoder module
(Fig. 3) to combine semantic and non semantic feature spaces. An
immediate concern when reconstructing from two latent spaces as
we propose is that an unconstrained non semantic feature space is
liable to store all the necessary information to reconstruct the input,
thereby leaving a decoder free to ignore the semantic feature space 𝑧𝑐 .
Previous work [30] ran into this issue when generating two partial re-
constructions – one from semantic features and one from non-semantic
features – and summing the two to obtain a complete reconstruction.
This was addressed by forcefully stopping gradient flows of one partial
reconstruction right before combination (depending on which partial
reconstruction needs more training). However, this method led to both
𝐸𝑐 and 𝐸𝑟 each contributing very similar information as this process
only ensures the two modalities contribute to the reconstruction. Con-
versely, we design an asymmetrical decoder that uses the two input
modalities differently.

To prevent 𝑧𝑟 from encoding all the information, we shift its role
from affecting what is on the reconstruction to affecting how the
semantic latent space 𝑧𝑐 is translated to a reconstruction. As figured
in Fig. 3, 𝐷 can be broken down into two sub decoders 𝐷𝑝𝑟𝑒 and 𝐷𝑝𝑜𝑠𝑡
such that ℎ = 𝐷𝑝𝑟𝑒(𝑧𝑐 ) ∈ R𝑆×𝐻×𝑊 can be construed as a stack of
𝑆 intermediate reconstruction maps. 𝑧𝑟 serves as a set of 𝑆 gating
weights ∈ [0, 1] (through the use of a final linear projection and softmax
activation) such that the final reconstruction 𝐷𝑝𝑜𝑠𝑡(ℎ′) mostly relies
on a few intermediate activation maps ℎ′ = 𝑧𝑟 ⊙ ℎ (e.g. only the
red and yellow maps remain in Fig. 3). While this can be seen as a
rescaling of feature maps (like in style transfer) [15,16,34], the absence
of style targets might lead to 𝑧𝑟 selecting all maps with a method such
as AdaIN. To address this, we ensure only a few maps are selected by 𝑧𝑟
to contribute to the final reconstruction for each sample using a softmax
activation (though no hard thresholding is applied). While it should be
useful to have more intermediate maps to select from in theory, we find
the method fairly robust in this regard (see Appendix. C.1).

This architecture allows us to reconstruct samples while avoid-
ing the pitfall of forcing the classifier’s feature extractor 𝐸𝑐 to keep
irrelevant information at minimal cost: computing the non-semantic
attention weights requires computing 𝑧𝑟 (equivalent to computing 𝐸𝑐)
and performing a (𝑑 × 𝑆) linear projection which is negligible with
respect to the overall model computation. Furthermore, we propose a
learning scheme that pushes the semantic encoder 𝐸𝑐 to leverage the
decoder 𝐷 to identify what it should keep track of through the second
term 𝛺𝑆𝐴𝑀𝑂𝑆𝐴 of the loss given in Eq. (1).

3.2. Learning scheme

Model optimization. SAMOSA relies on a regularizer term 𝛺𝑆𝐴𝑀𝑂𝑆𝐴 to
leverage its peculiar architecture:

𝛺𝑆𝐴𝑀𝑂𝑆𝐴({𝑥𝑙}𝑙
∪ {𝑥𝑢}𝑢

) =𝜆𝑟𝑒𝑐𝑟𝑒𝑐 ({𝑥𝑙} ∪ {𝑥𝑢}) (2)
4

+ 𝜆𝑆𝐴𝑀𝑂𝑆𝐴𝛺𝑟𝑒𝑐 ({𝑥𝑙} ∪ {𝑥𝑢}),
Fig. 4. Optimization of 𝑆𝐴𝑀𝑂𝑆𝐴 in the modules. The base SSL loss 0,𝑋 loss optimizes
the classifier modules while the reconstruction loss 𝑟𝑒𝑐 optimizes the additional
modules 𝐸𝑟 and 𝐷. 𝐸𝑐 is benefits from the reconstruction module through the 𝛺𝑟𝑒𝑐
regularizer.

with the term 𝑟𝑒𝑐 used to optimize 𝐸𝑟 and 𝐷 for reconstruction
of inputs, and the auxiliary regularizer 𝛺𝑟𝑒𝑐 used to refine 𝐸𝑐 through
knowledge learned by 𝐷. This differs significantly from traditional
work in SSL that uses reconstruction for regularization as we do not di-
rectly optimize the classifier for reconstruction. Rather, we leverage our
asymmetrical decoder’s peculiar structure to regularize the classifier so
that it solely learns to reconstruct information identified as semantic
by our framework.

𝑟𝑒𝑐 = 1
#

∑

𝑥∈ ‖𝐷(𝐸𝑐 (𝑥), 𝐸𝑟(𝑥)) − 𝑥‖22 (figured on Fig. 4) tries to
match inputs 𝑥 to model reconstructions 𝐷(𝐸𝑐 (𝑥), 𝐸𝑟(𝑥)) through the L2
distance between the two. 𝐸𝑐 is deliberately not optimized here as skip
connections [1] in modern neural networks already let a lot of input
information trickle down to their feature space. In our experiments, we
found optimizing 𝐸𝑐 for reconstruction led 𝐷 to rely entirely on 𝐸𝑐 and
ignore 𝐸𝑟.

𝛺𝑟𝑒𝑐 = 1
#

∑

𝑥∈ ‖𝐸(0..(𝑑𝑐−2))
𝑐 (𝑥) −𝐷(0)(𝐸𝑐 (𝑥), 𝐸𝑟(𝑥))‖

2
2 leverages our

decoder’s asymmetrical structure to regularize 𝐸𝑐 (Fig. 4). Importantly,
the first few intermediate reconstructions are purely semantic as they
are prior to re-modulation by 𝑧𝑟 (the style input 𝐸𝑟(𝑥) in 𝐷(𝐸𝑐 (𝑥), 𝐸𝑟(𝑥))
is of no effect). Therefore, training 𝐸𝑐 to match these early decoder
features provides a novel reconstruction regularizer for the feature
extractor that is not polluted by non-semantic information (i.e. infor-
mation injected by 𝐸𝑟(𝑥) in the reconstruction). In practice, 𝛺𝑟𝑒𝑐 ties the
last intermediate features 𝐸(0..(𝑑𝑐−2))

𝑐 (𝑥) extracted by 𝐸𝑐 (layer 𝐸(𝑑𝑐−2)
𝑐 )

to the first intermediate reconstructions 𝐷(0)(𝐸𝑐 (𝑥), 𝐸𝑟(𝑥)) generated by
𝐷 (layer 𝐷(0)). Here, 𝑑𝑐 refers to the depth of 𝐸𝑐 , 𝐸(0..(𝑑𝑐−2))

𝑐 to the
composition of the first 𝑑𝑐 − 1 convolutional layers of 𝐸𝑐 (all but the
last one), and 𝐷(0) to the first convolutional layer of 𝐷. We tie the last
intermediate features of 𝐸𝑐 to the first intermediate reconstructions of
𝐷 to regularize as much of the semantic encoder as possible. Which
intermediate reconstruction precisely is used matters little as long as
it provides a viable target to train the semantic encoder (see Appendix
C.2).

This training process yields an architecture capable of generating
hybrids that incorporates non-semantic content from a sample 𝑥2 into
a sample 𝑥1 while preserving 𝑥1’s semantic content. We now discuss
how this can be put to use in a Semi-Supervised Learning setting.

3.3. Making use of the SAMOSA framework in semi-supervised learning

We introduce a novel asymmetrical decoder that is modular by
design with regard to semantic and non semantic content, as well as
propose an adapted training scheme. In practice, the learning scheme
itself can be used to regularize classifiers, but the trained models
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Fig. 5. A trained model can then be used to combine semantic content from a boat
picture and non semantic content from a plane picture.

Algorithm 1 Algorithm for the hybridization procedure.
Require: Batch  = 𝑙 ∪ 𝑢, Modules 𝐸𝑐 , 𝐸𝑟, 𝐶,𝐷
function Hybridize(𝑙 ,𝑢)

 = ∅
for (𝑥(1), 𝑦(1)), 𝑥(2) ∈ 𝑧𝑖𝑝(𝑙 ,𝑢) do

𝑧(1)𝑐 = 𝐸𝑐 (𝑥(1))
𝑧(2)𝑟 = 𝐸𝑟(𝑥(2))
𝑥ℎ = 𝐷(𝑧(1)𝑐 , 𝑧(2)𝑟 )
if 𝑎𝑟𝑔𝑚𝑎𝑥(𝐶(𝐸𝑐 (𝑥ℎ))) == 𝑦(1) then

𝑥ℎ = 𝑥(1)

end if
 =  ∪ {(𝑥ℎ, 𝑦(1))}

end for
return 

end function

can also be used to generate augmented samples to train models on.
For instance, a model could be trained to optimize 𝑆𝐴𝑀𝑂𝑆𝐴, then
used to generate a set of artificial labeled samples through SAMOSA
hybridization and the model could then be re-trained on the augmented
dataset.

Algorithm 2 Skeleton of SAMOSA integration with the Mean Teacher
Framework. Additions to the Mean Teacher Framework are in blue.
Require: Dataset  = 𝑙 ∪ 𝑢, Number of complete training cycles
𝑛𝑐𝑦𝑐𝑙𝑒𝑠, Number of epochs in a cycle 𝑛𝑒𝑝𝑜𝑐ℎ𝑠.
for cycle in 1. . .𝑛𝑐𝑦𝑐𝑙𝑒𝑠 do

𝑙,0 = 𝑙
for epoch in 1. . .𝑛𝑒𝑝𝑜𝑐ℎ𝑠 do

for  = 𝑙 ∪ 𝑢 in Batch() do
Compute 𝑆𝐴𝑀𝑂𝑆𝐴() = 0,𝑀𝑇 ()+𝛺𝑆𝐴𝑀𝑂𝑆𝐴()
Optimization step for 𝑆𝐴𝑀𝑂𝑆𝐴()

end for
end for
for epoch in 1. . . 10 do

ℎ = ∅
for 𝑙 ,𝑢 in zip(Batch(𝑙,0), Batch(𝑢)) do

 = 𝐻𝑦𝑏𝑟𝑖𝑑𝑖𝑧𝑒(𝑙 ,𝑢)
ℎ = ℎ ∪ 

end for
end for
𝑙 = 𝑙,0 ∪ℎ

end for

Indeed, generating hybrids given a trained model is straightforward
(Alg. 1 and Fig. 5). Specifically, given samples 𝑥(1) (with known label
𝑦(1)) and 𝑥(2), we extract the relevant features 𝑧(1)𝑐 = 𝐸𝑐 (𝑥(1)), 𝑧(1)𝑟 =
𝐸𝑟(𝑥(1)), 𝑧

(2)
𝑐 = 𝐸𝑐 (𝑥(2)) and 𝑧(2)𝑟 = 𝐸𝑟(𝑥(2)). 𝑥ℎ = 𝐷(𝑧(1)𝑐 , 𝑧(2)𝑟 ) is now a

sample with class 𝑦(1). As a conservative measure, we only keep the gen-
erated hybrid if 𝐶(𝐸 (𝑥 )) = 𝑦(1) to avoid disturbing decision boundaries
5

𝑐 ℎ
too much. Note that with this, we generate a strong augmentation of 𝑥1
and teach the classifier to group 𝑥1 with its strongly augmented version
in a similar line to work in contrastive representation learning [35].

Algorithm 3 Skeleton of SAMOSA integration with the MixMatch
Framework. Additions to the MixMatch Framework are in blue.
Require: Dataset  = 𝑙∪𝑢, Number of epochs during training 𝑛𝑒𝑝𝑜𝑐ℎ𝑠

𝑙,0 = 𝑙
for epoch in 1. . .𝑛𝑒𝑝𝑜𝑐ℎ𝑠 do

for  = 𝑙 ∪ 𝑢 in Batch() do
𝑙 ,𝑙 ∶= 𝑙
𝑢 ∶= 𝑢
Estimate pseudo-targets 𝑢 as per [8]
 ∶= 𝐶𝑜𝑛𝑐𝑎𝑡({(𝑥𝑙 , 𝑦𝑙)}, {𝑥𝑢, 𝑦𝑢})
̃ ∶= 𝑆ℎ𝑢𝑓𝑓𝑙𝑒()
𝑝 ∼ 𝑅𝑎𝑛𝑑𝑜𝑚(0, 1)
if 𝑝 < 1

5 then
̃ = 𝐻𝑦𝑏𝑟𝑖𝑑𝑖𝑧𝑒( , ̃)

else
̃ = 𝑀𝑖𝑥𝑈𝑝𝑏𝑖𝑎𝑠𝑒𝑑 ( , ̃)

end if
Compute 𝑆𝐴𝑀𝑂𝑆𝐴(̃) = 0,𝑀𝑖𝑥(̃)+𝛺𝑆𝐴𝑀𝑂𝑆𝐴(̃)
Optimization step for 𝑆𝐴𝑀𝑂𝑆𝐴(̃)

end for
end for

As previously discussed, SAMOSA can be deployed in SSL systems
in a variety of ways, three of which are explored experimentally in this
paper. We study a first framework that trains a SSL model to optimize
𝑆𝐴𝑀𝑂𝑆𝐴, generates hybrids using labeled samples for the semantic
component and unlabeled samples for the non-semantic component,
and re-trains the model on the augmented set (Alg. 2). We also show a
more intricate incorporation of SAMOSA in the MixMatch framework
(Alg. 3) by occasionally replacing the MixUp procedure with our in-
class hybridization in the training of a MixMatch model optimizing
𝑆𝐴𝑀𝑂𝑆𝐴. Furthermore, we also incorporate SAMOSA into the state
of the art FixMatch framework (Alg. 4) by sometimes hybridizing the
strongly augmented samples used by FixMatch in the training of a
FixMatch model optimizing 𝑆𝐴𝑀𝑂𝑆𝐴.

Algorithm 4 Skeleton of SAMOSA integration with the FixMatch
Framework. Additions to the FixMatch Framework are in blue.
Require: Dataset  = 𝑙∪𝑢, Number of epochs during training 𝑛𝑒𝑝𝑜𝑐ℎ𝑠

𝑙,0 = 𝑙
for epoch in 1. . .𝑛𝑒𝑝𝑜𝑐ℎ𝑠 do

for  = 𝑙 ∪ 𝑢 in Batch() do
Get labeled samples 𝑤

𝑙 ,𝑙 ∶= 𝑙
Get weakly and strongly augmented pairs 𝑤

𝑢 ,𝑠
𝑢 ∶= 𝑢

Estimate pseudo-labels 𝑢 as per [17]
̃𝑠
𝑢 ∶= 𝑆ℎ𝑢𝑓𝑓𝑙𝑒(𝑠

𝑢 )
𝑝 ∼ 𝑅𝑎𝑛𝑑𝑜𝑚(0, 1)
if 𝑝 < 1

5 then
𝑠
𝑢 = 𝐻𝑦𝑏𝑟𝑖𝑑𝑖𝑧𝑒(𝑤

𝑢 , ̃𝑠
𝑢 )

end if
Compute 𝑆𝐴𝑀𝑂𝑆𝐴() = 0,𝐹 𝑖𝑥(̃𝑠

𝑢 ,𝑢)+𝛺𝑆𝐴𝑀𝑂𝑆𝐴()
Optimization step for 𝑆𝐴𝑀𝑂𝑆𝐴()

end for
end for

4. Experiments

We demonstrate here how the disentangling reconstruction module
and resulting hybridization capabilities can be leveraged to improve
upon three existing methods: Mean Teacher [6], MixMatch [8] and
FixMatch [17] (refer to Section 4.1 for how we apply SAMOSA to these
methods). We chose Mean Teacher as a reference pure consistency-
based baseline. Beyond its widespread use in SSL, consistency induces
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a stabilization we feel would play a significant role to extract invariant
semantic features. MixMatch was chosen to illustrate interactions of the
method with more modern methods that make use of mixing techniques
(such as CutMix, CowMix, ICT and ReMixMatch). FixMatch finally
provides an insight into how SAMOSA can interact with strong data
augmentations that apply very destructive perturbations to images, and
most state of the art [21–23] methods are based upon FixMatch to
this day. We conduct experiments on the CIFAR10 dataset, which is
a standard evaluation benchmarks in the semi-supervised learning lit-
erature. We also conduct additional experiments for the Mean Teacher
backbone of SAMOSA on the SVHN dataset with very few labels and
the more complex CIFAR100 dataset.

CIFAR10 dataset. The CIFAR10 dataset [36] is a subset of the TinyIm-
ges dataset comprised 32 × 32 RGB images from ten classes: airplane,
ar, truck, boat, bird, cat, deer, dog, frog and horse. Available samples
re split between 50000 training samples and 10000 test samples. We
ainly keep 1000 labeled training samples for our ablation studies and

o compare model performances in general. In addition, we consider an
ntermediately difficult setting with 500 labeled samples, and perform
n ablation study on a difficult 250 labeled samples setting for the Mean
eacher based SAMOSA.

VHN dataset. The SVHN dataset [37] is comprised of 32 × 32 RGB
images of street numbers (divided along ten classes: one per digit).
Available samples are split between 73257 training samples and 26032
test images. We use the SVHN dataset to study the very challeng-
ing setting where only 100 labeled samples are available, which is
un-advisable on CIFAR10 due to the very uneven quality of labeled
examples in CIFAR10.

Samples are randomly flipped horizontally (only for CIFAR10) and
shifted by up to 4 pixels both horizontally and vertically with re-
flect padding. The resulting augmented samples are then standardized
channel-wise according to train set statistics. No holdout validation
set is kept for either dataset but hyper-parameters are mostly directly
adapted from [8,30].

CIFAR100 dataset. The CIFAR100 dataset [36] (like CIFAR10) is a
subset of the TinyImages dataset comprised 32 × 32 RGB images from
a hundred classes. Available samples are split between 50000 training
samples and 10000 test samples. This more complex dataset allows us
to further study the behavior of SAMOSA in situations where there are
many different semantic classes to keep track of.

Experimental setting. We operate on a standard WideResNet-28-2 [38]
which is widely used in the Semi-Supervised Learning literature as a
base model (𝐸𝑐 ◦ 𝐶). 𝐸𝑟 follows the same architecture as 𝐸𝑐 with
an additional final linear layer and softmax activation to obtain ac-
tivation gates. The skeleton of 𝐷 follows an inverted 13-layer 4-4-4
CNN architecture, with 𝐷𝑝𝑟𝑒 being a 4–4 block and 𝐷𝑝𝑜𝑠𝑡 being made
up of the last 4 block and final convolution. Hyperparameters and
optimizers were generally taken to follow settings reported in the base
methods’ original papers [6,8]. More details are briefly provided in the
relevant incremental gains section, but exact details are provided in the
supplementary material for each experiment and architecture.

We evaluate performance through classification accuracy. Results
are presented as 𝜇 ± 𝜎, with 𝜇 the average value and 𝜎 the standard
deviation across three seeded runs (random initializations). All results
presented are run from the same code base and computation servers
as per [39]. In particular, the same three initializations were used for
all methods. For better comparison, we perform paired one-sided t-test
to evaluate improvements brought by SAMOSA and bold results where
𝑝 ≤ 0.1 as an indication (full results provided in the supplementary) in
6

the following. t
Table 1
Comparative accuracies (%) with SAMOSA as an add-on module on CIFAR10.

Method CIFAR10

250 500 1000

Purely supervised (lower bound) 27.8 ± 0.9 35.4 ± 1.9 43.5 ± 2.4

Mean Teachera, [6] 61.3 ± 3.3 76.4 ± 3.1 87.6 ± 0.3
Mean Teacher + SAMOSA (ours) 𝟔𝟖.𝟏 ± 𝟑.𝟑 𝟖𝟐.𝟒 ± 𝟏.𝟑 𝟖𝟖.𝟕 ± 𝟎.𝟑

MixMatchab, [8] 𝟖𝟐.𝟒 ± 𝟎.𝟒 86.8 ± 0.2 𝟗𝟎.𝟒 ± 𝟎.𝟏
MixMatch + SAMOSA (ours) 𝟖𝟒.𝟏 ± 𝟐.𝟐 𝟖𝟗.𝟒 ± 𝟎.𝟖 𝟗𝟎.𝟕 ± 𝟎.𝟑

aReproduced by adapting available code (see Supplementary).
bDifferent setting from [8] for fast training.

4.1. SAMOSA gains

We show here that SAMOSA can improve performance when added
to Mean Teacher, MixMatch (Table 1) and FixMatch (discussed below).
In each table, we also report for reference the accuracy of models
trained in a purely supervised fashion on the available labeled samples
as a lower bound.

Mean teacher (MT). We evaluate a first application of SAMOSA for
augmentation to show improvements on Mean Teacher (the procedure
is detailed in Alg. 2). We train the model normally for 300 epochs (with
the reconstruction module), then we hybridize every labeled sample
with 10 unlabeled samples. For every generated hybrid, we keep the
artificial example only if it still gets predicted by the model as being
part of the right class, otherwise the hybrid is replaced by its semantic
‘‘parent’’. The model is then retrained with this additional labeled
data over 300 epochs. Afterwards, another hybridization procedure is
repeated and a final training is conducted, still over the same number
of epochs.

The model is trained using a SGD optimizer with cosine learning
rate (base 0.2 learning rate) for 300 epochs over the unlabeled samples
for CIFAR10 for one training cycle. After each training and subsequent
augmentation step, the learning rate is reset and training resumes (for
an overall 900 epochs). In the following training passes, the model
is only optimized over the augmented dataset (instead of the true
dataset) from epoch 150 to 250 of each cycle (following discussions
in [40,41]) with 𝜆𝑟𝑒𝑐𝑜𝑛𝑠 = 0.25 and 𝜆𝑆𝐴𝑀𝑂𝑆𝐴 = 0.5∕0.1. Exact details in
the supplementary material.

As a baseline, we check the performance of the model trained under
the same procedure (3 training cycles) but with no reconstruction reg-
ularizer, and no artificial samples. Table 1 shows improvements from
using the SAMOSA framework on top of Mean Teacher. Notably, we
have very noticeable gains for 250 labels, which suggests the method
is particularly useful when labeled information is lacking. To explore
performance with very few labels, we furthermore tested the model
with 100 labels on SVHN. An important accuracy gain from 62.5 ± 3.7
o 𝟔𝟔.𝟐 ± 𝟐.𝟐 is observed which is significant given such very low label
ettings are especially interesting in applied settings. The same gains
re also reliably observed on the more complex CIFAR100 datasets
here SAMOSA improves the Mean Teacher baseline from 24.9 ± 0.7

o 𝟐𝟕.𝟔 ± 𝟐.𝟑 with 1000 labels (and from 48.1 ± 0.8 to 𝟓𝟏.𝟎 ± 𝟎.𝟓 with
500 labels).

ixMatch (mix) for fast training. We showcase a more intricate use
f SAMOSA on MixMatch by directly incorporating our augmentation
rocess in MixMatch’s native hybridization (MixUp) as detailed in Alg.
. We train the reconstruction module along the base classifier model,
s well as optimize for the reconstruction regularizer. Every batch, with
robability 𝑝 = 0.2, we replace the MixUp examples with Hybrids
enerated from our reconstruction module. For every reconstructed
ybrid, we keep the label/pseudolabel corresponding to its semantic

‘parent’’. Contrarily to the Mean Teacher case, we generate hybrids

hat have both labeled and unlabeled samples as semantic ‘‘parents’’
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Table 2
Ablation Study on the components of SAMOSA. Accuracies (%) on the
CIFAR10 settings for both studied backbones.
0 𝛺𝑟𝑒𝑐 𝐴𝑢𝑔 Mean Teacher MixMatch

500 500

✓ ✗ ✗ 76.4 ± 3.1 86.8 ± 0.2
✓ ✓ ✗ 82.1 ± 1.5 88.5 ± 1.2
✓ ✓ ✓ 𝟖𝟐.𝟒 ± 𝟏.𝟑 𝟖𝟗.𝟒 ± 𝟎.𝟖

(as is done by MixUp in MixMatch) and leverage the pseudo-label
MixMatch naturally generates throughout its course for MixUp. Exact
details are given in the supplementary material, but are similar to the
Mean Teacher ones. We follow [8] and report results from a weight
averaged model.

As a baseline comparison, we check the performance of the model
trained under the same procedure (which is basically the normal train-
ing procedure) but with no reconstruction regularizer, and no artificial
samples. As can be seen from Table 1, sizable gains are achieved on
both the 500 and 250 labels CIFAR10 settings, and are consistent
even when 3 runs are not enough to definitely verify improvements.
Interestingly, adding SAMOSA to MixMatch increases the variance of
the model which is not the case in the Mean Teacher case. The use of
MixUp hybrids in MixMatch strongly influences the hybrids generated
by SAMOSA (discussed in Section 4.3). This and the random nature
of MixUp could lead to a stronger variability in the quality of hybrids
learned by a SAMOSA generator. Considering how reliant SAMOSA’s
classifier is on the quality of the generated hybrids for regularization,
we believe this explains the higher variance on MixMatch + SAMOSA.

FixMatch (fix). We additionally demonstrate SAMOSA can combine
with strong data augmentation techniques by also studying a FixMatch
based version of SAMOSA as detailed in Alg. 4. We train the reconstruc-
tion module along the base classifier model, as well as optimize for
the reconstruction regularizer. Every batch, with probability 𝑝 = 0.2,

e further perturb the strongly augmented samples in FixMatch by
ybridizing them through our reconstruction module. For every gener-
ted ‘‘strong’’ hybrid, we keep the label/pseudolabel corresponding to
ts semantic ‘‘parent’’. We follow [8] and report results from a weight
veraged model.

As a baseline comparison, we check the performance of the model
rained under the same procedure (which is basically the normal train-
ng procedure) but with no reconstruction regularizer, and no artifi-
ial samples on a very challenging low label setting (CIFAR 10 with
00 labels). The newly described Algorithm 4 leads to significant
ains on FixMatch (from 91.5 ± 0.6 to 𝟗𝟐.𝟏 ± 𝟎.𝟐) which demonstrates
AMOSA can combine a state-of-the-art framework based on strong
ata augmentation and pseudo-labeling.

With SAMOSA’s ability to improve existing methods like Mean
eacher, MixMatch and FixMatch well established, we now study the

ndividual relevance of its internal components.

.2. Ablation study: General components of SAMOSA

We now validate our two main contributions on CIFAR 10, i.e. the
ncorporation of a reconstruction module that allows mixing semantic
nd non semantic information from different samples, and the use of
ybrid samples as data augmentation to further refine model features.
e mainly study the ablations on challenging settings so that perfor-
ance gains can be as clear as possible. As such, we consider the 500

abel setting on CIFAR10 for both the Mean Teacher backbone and the
ixMatch backbone (due to high MixMatch variance at 250 labels).

Results from Table 2 show that both the reconstruction regular-
zation loss and the augmented hybrids provide significant gains in
ccuracy. Moreover, the best performance is attained when stacking
7

he two components. Interestingly, the gain from using the regularizer
𝑟𝑒𝑐 is the greatest influence for both experiments. This shows the
elevance of the reconstruction scheme to regularize training, which
s especially pronounced in low data regimes. Nevertheless, improve-
ents can consistently be observed from adding augmented samples

o the regularized model. Interestingly, optimizing 𝐸𝑐 with 𝑟𝑒𝑐 leads
o hybrids identical to the semantic parent and poor accuracy of the
rained classifier.

.3. Qualitative study: Generated hybrids

We show in Fig. 6 hybrids generated by the method. As can be
bserved, SAMOSA learns to isolate a variety of visually identifiable
on semantic characteristics (number colors, light exposition, color
ues, some irrelevant colorations) without any more supervision than
imple L2 reconstruction. Interestingly, the MixMatch based variant is
ore aggressive in combining samples (the background in particular)
hile still preserving the outline of the relevant semantic content. This

an be attributed to interplay between the MixUp procedure and our
ybridization procedure, and suggests there is indeed complementarity
etween our method and other mixing augmentation methods. Figures
resented in the supplementary material suggest SAMOSA’s ability to
dentify such characteristics is correlated with model performance,
hich can account for the lack of strong effect of hybrid augmentation

n the low label CIFAR10 setting. This actually reinforces the intuition
ehind SAMOSA: the non semantic encoder picks up redundancies
iscarded by the semantic encoder. When the classifier’s accuracy is not
ery high, it fails to discard redundant information which leads to little
ependence on 𝑧𝑟. While this means the model will not benefit from
AMOSA, it is fortunately unlikely this will significantly deteriorate its
erformance. Indeed, such failure cases tend to result in hybrids being
omplete reconstructions of their semantic parent and therefore have
o effect.

In addition to verifying 𝑧𝑟 does indeed cause non-semantic changes
n reconstruction/hybridization, we also observe that it does not con-
ain a lot of semantic information. Training a classification head (with
ll 50 000 labeled training samples) on the non-semantic space of a
rained MT-SAMOSA model (1000 label CIFAR 10 setting) does lead
o low classification accuracy (about 30%). This contrasts with the
8% accuracy obtained by a linear layer trained on the semantic space
𝑐 with only 1000 labeled samples in previous experiments. As such,
e verify that 𝑧𝑟 does not extract specifically semantic features in
ccordance with SAMOSA’s design. What little semantic information
emains in 𝑧𝑟 is ignored by the decoder 𝐷 as generated hybrids only
nherit the class of their non-semantic parents in about 10% of cases
random chance). Furthermore, we can verify that expunging semantic
ontent from 𝑧𝑟 is pointless. 𝑧𝑟 can be made wholly non-semantic by
raining a linear classifier to classify from 𝑧𝑟, and training 𝐸𝑟 to fool this
lassifier. While a model trained this way retains almost no semantic
nformation in non-semantic space 𝑧𝑟 (about 18% accuracy for a linear
lassifier trained on the frozen projection), such a model fails to better
lassify samples (accuracy of 88.5 ± 0.1 vs. 88.7 ± 0.3).

To verify these intuitions, we investigate this from a more quanti-
ative point of view.

.4. Case study: Component separation

We now investigate the composition of generated hybrids on re-
uced settings (MT Base) to verify the model’s ability to generate
ybrids that correctly inherit their parent’s semantic and non-semantic
omponents. To this end, at various points during training, we generate
study dataset of hybrid samples 𝐻 . The dataset is generated by
ixing every sample in the labeled set with ten random unlabeled

amples such that # = 10 × # .
𝐻 𝑙
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Fig. 6. Hybrids between true samples 𝑥1 and 𝑥2. Results for both Mean-Teacher and MixMatch based SAMOSA trained on SVHN (100 labels) and CIFAR10 (1000 labels).
Inheritance of semantic and non-semantic features. We start by assessing
how well generated hybrids inherit semantic/non-semantic features
with respect to our model’s learned projections. The quality of the
inherited semantic component can be approximated straightforwardly
by considering the accuracy 𝑠𝑐 of our trained classifier on hybrids (ie,
checking how many hybrids are correctly classified as belonging to
the same class as their semantic parent). As we do not have access to
such a clear criterion for the non-semantic component, we use a proxy
metric in the non-semantic latent space. We consider the distance 𝑑𝑙 ∶=
‖𝑧ℎ𝑟 − 𝑧1𝑟‖

2
2 (resp. 𝑑𝑟 ∶= ‖𝑧ℎ𝑟 − 𝑧2𝑟‖

2
2) between the extracted non-semantic

feature 𝑧ℎ𝑟 = 𝐸𝑟(𝑥ℎ) of a hybrid 𝑥ℎ and those of its semantic parent
𝑧1𝑟 (resp. non-semantic parent 𝑧2𝑟 ). If 𝑑𝑙 ≥ 𝑑𝑟, then we conclude the
hybrid correctly inherited its non-semantic parent’s style component.
As such, we can define a non-semantic separation accuracy 𝑠𝑟 by the
proportion of hybrids in 𝐻 correctly identified as being closer to their
non-semantic parent. In other words, we monitor whether the hybrid’s
non-semantic content is indeed closer to its non-semantic parent’s.

The accuracy of the semantic and non-semantic separation tasks are
presented in (Table 3) along with the average distances in non-semantic
space to the hybrid’s parent samples 𝑑𝑙 and 𝑑𝑟 at the end of training. On
both datasets, we can observe that hybrids mostly inherit the correct
semantic and non semantic characteristics at the end of training. In
particular, non-semantic features of hybrids are about 10 times closer
to their non-semantic parents’ compared to their semantic parents’.

Importantly, the observed inheritance of semantic/non-semantic
features significantly improves over the course of the entire training.
For instance, with 1000 labels on CIFAR10, semantic accuracy 𝑠𝑐 on
generated hybrids at the end of the first training cycle (300 epochs, no
hybrid augmentation yet) is 74.1±2.5, 93.0±2.5 at the end of the second
(trained with hybrid augmentation) and 97.3±0.6 at the end of training.
8

In theory, two inputs reconstructed from the same semantic features
but different non-semantic features should lead to extracting the same
semantic features. However, in practice generated hybrids constitute
new samples an overfit model could have trouble accommodating, or
present combinations of semantic/non-semantic features that interfere
with each other. As per the previous results, our augmentation strategy
helps the model deal with those new problematic samples by presenting
them as training samples.

Inheritance of non-semantic background in MNIST-M. To better under-
stand non-semantic features, we run an additional experiment by gen-
erating an MNIST-M-style dataset [42] by combining each digit picture
in the MNIST [43] dataset with a random crop from the BSD 500
dataset [44] (Fig. 7). A model is trained following our standard proce-
dure over 50 000 training samples (100 labeled samples), and we track
the hybrids generated during training as outlined previously.

Once again, we assess the correct inheritance of semantic content
from the semantic parent by tracking the classification accuracy 𝑠𝑐
over hybrids. This experiment however differs from the previous one
in how the non-semantic distances 𝑑𝑙 and 𝑑𝑟 are computed. Instead, of
considering the distances in 𝑧𝑟 latent space we leverage the construction
of MNIST-M to propose a more interpretable criterion.

The MNIST-M dataset presents one known non-semantic feature: the
background of the samples. We therefore verify experimentally that the
background of hybrids generated by our procedure closely matches the
background of their non-semantic parents (more closely than the one
of their semantic parent) instead of considering 𝑧𝑟 distances. By con-
struction of MNIST-M, we know which pixels in images correspond to
a digit and which correspond to a BSD 500 background: we know which
MNIST sample was used to generate the sample. As such, we can have
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Table 3
Identification of semantic and non-semantic parents on a hybrid dataset 𝐻 at the end of training on multiple datasets.
Both the semantic separation 𝑠𝑐 and the non-semantic separation 𝑠𝑟 accuracies show the model properly incorporates
semantic and non-semantic information during hybridization. The ratio of the average non-semantic distances 𝑑𝑐

𝑑𝑟
between hybrids and their semantic/non-semantic parent is given to complement non-semantic separation scores 𝑠𝑟.

(a) Component separation (CIFAR10 and SVHN).

Method CIFAR10 SVHN

1000 250

Accuracy 𝑠𝑐 (%) 97.3 ± 0.6 100 ± 0.0

Accuracy 𝑠𝑟 (%) 100 ± 0 98.2 ± 0.3
Ratio of mean 𝑑𝑐

𝑑𝑟
15.5 ± 2.6 7.6 ± 1.4

(b) Background inheritance (MNIST-M).

Method MNIST-M

100

Accuracy 𝑠𝑐 (%) 99.9 ± 0.2

Accuracy 𝑠𝑟 (%) 96.8 ± 3.1
Ratio of mean 𝑑𝑐

𝑑𝑟
11.0 ± 4.0
Fig. 7. Hybrids for MNIST-M (format: see Fig. 6).
access to a mask that zeroes out pixels corresponding to the digit and
does not alter background pixels for MNIST-M images. As qualitative
studies (Fig. 7) suggest hybrid samples do correctly inherit digit outline
from their semantic parent, we approximate the background of hybrids
to be the same as that of their semantic parent. Therefore, we calculate
the background of hybrid samples 𝑏ℎ = 𝑚1 ⊙𝑥ℎ by applying a mask 𝑚1
that zeroes out pixels corresponding to the digit in the semantic parent
(known by construction). The backgrounds 𝑏1 and 𝑏2 of the parent
samples are also known by construction (corresponding to the BSD
500 backgrounds used to generate samples). Similarly to our previous
procedure, if 𝑑𝑙 ∶= ‖𝑏ℎ − 𝑚1 ⊙ 𝑏1‖22 ≥ 𝑑𝑟 ∶= ‖𝑏ℎ − 𝑚1 ⊙ 𝑏2‖22, then we
conclude the hybrid correctly inherited its non-semantic parent’s style
component.

The separation accuracies 𝑠𝑐 and 𝑠𝑟 as well as the distances between
the hybrid’s background and its parents’ are given in Table 3. Results
suggest a clear separation of semantic and non-semantic content in
hybrids. The nature of the pixel distances tracked in this experiment
strongly correlate the model’s notion of non-semantic features with
the known background modularity as expected. As such, the results
strongly suggest that at least in simple cases, SAMOSA is capable of
correctly identifying and separating the semantic and non-semantic
factors in training data.

5. Discussion

In this paper, we introduced SAMOSA, a framework that improves
existing SSL algorithms by refining classifier features through unsu-
pervised reconstruction, and by generating hybrid samples for data
augmentation. Thanks to its separation of semantic and non semantic
components, SAMOSA generates hybrids mixing the semantic content
and non semantic characteristics of different samples.

We verified experimentally the framework improves the perfor-
mance of the Mean Teacher, MixMatch and FixMatch algorithms, with
noticeable gains given little labeled data. We also demonstrated the
usefulness both of our reconstruction module for classifier regulariza-
tion, and of the semantically consistent hybrid augmentation. Further-
more, we displayed convincing hybrids by human standard, showing
9

our asymmetrical decoder’s ability to hybridize samples. Further in-
vestigation demonstrated the good quality of the generated hybrids
and provided an interpretation of non-semantic content on the toy
MNIST-M dataset.

We explored in this paper content hybridization of samples (as
opposed to pixel interpolation) in Semi-Supervised Learning. We be-
lieve mixing augmentations with hard predictive labels is currently
insufficiently studied relative to strong augmentations for consistency
optimization. In particular, how this new hybridization – which be-
haves somewhat like a pseudo-labeling scheme – should be leveraged
for model hybridization remains to be explored in more details.
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