
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Optimization of Rank Losses for Image Retrieval
Elias Ramzi , Nicolas Audebert , Clément Rambour ,

André Araujo , Senior Member, IEEE, Xavier Bitot , and Nicolas Thome

Abstract—In image retrieval, standard evaluation metrics rely
on score ranking, e.g. average precision (AP), recall at k (R@k),
normalized discounted cumulative gain (NDCG). In this work, we
introduce a general framework for robust and decomposable rank
losses optimization. It addresses two major challenges for end-to-end
training of deep neural networks with rank losses: non-differentiability
and non-decomposability. Firstly, we propose a general surrogate for
ranking operator, SupRank, that is amenable to stochastic gradient
descent. It provides an upperbound for rank losses and ensures robust
training. Secondly, we use a simple yet effective loss function to reduce
the decomposability gap between the averaged batch approximation of
ranking losses and their values on the whole training set. We apply our
framework to two standard metrics for image retrieval: AP and R@k.
Additionally, we apply our framework to hierarchical image retrieval.
We introduce an extension of AP, the hierarchical average precision
H-AP, and optimize it as well as the NDCG. Finally, we create the first
hierarchical landmarks retrieval dataset. We use a semi-automatic
pipeline to create hierarchical labels, extending the large scale Google
Landmarks v2 dataset. The hierarchical dataset is publicly available
at github.com/cvdfoundation/google-landmark. Code is available at
github.com/elias-ramzi/SupRank.

Index Terms—Image Retrieval, Ranking, Average Precision, Hier-
archical Ranking, Hierarchical Average Precision, Non-Decomposable

I. INTRODUCTION

Image retrieval (IR) is a major task in computer vision. Its goal is
to retrieve “similar” images to a query in a database. In modern com-
puter vision this is achieved by learning a space of image representa-
tion, i.e. embeddings, where “similar” images are close to each other.

The performances of IR systems are often measured using
ranking-based metrics, e.g. average precision (AP), recall rate
at k (R@k), Normalized Discounted Cumulative Gain (NDCG).
These metrics penalize assigning a higher similarity to non-relevant
images than to relevant ones.

Although these metrics are well-suited for image retrieval, their
use as a loss functions for training deep neural networks is a
challenge. We can point out two two main difficulties: i) they are
not amenable to stochastic gradient descent (SGD) and thus cannot
be used directly to train deep neural networks (DNN), ii) they are
not decomposable.

Regarding the first challenge, there has been a rich literature
to provide proxy losses for the task of image retrieval using tuplet
losses [1]–[9] or cross entropy based losses [10]–[15]. There also
has been extensive work to create rank losses amenable to gradient
descent [16]–[28]. They create either coarse upper bounds of the
target metric or tighter approximations but loosen the upper bound
property which affects final performances.

Elias Ramzi, Nicolas Audebert and Clément Rambour are with the Cnam.
André Araujo is with Google DeepMind.
Xavier Bitot is with Coexya.
Nicolas Thome is with Sorbonne Université.
Manuscript updated August 2nd, 2024

The non-decomposability challenge arises when training deep
models with ranking losses, since the average loss over batches
generally underestimates its value on the whole training dataset,
which we refer to as the decomposability gap. In image retrieval,
attempts to circumvent the problem involve ad hoc methods
based on hard batch sampling strategies [5], [7], [29], [30],
storing all training representations/scores [31], [32] or using larger
batches [24], [25], [28], leading to complex models with a large
computation or memory overhead.

The core of our approach is a a unified framework, illustrated
in Fig. 1 and detailed in Sec. III, to optimize rank losses for both
hierarchical and standard image retrieval. Specifically, we propose
SupRank, a smooth approximation of the rank which is amenable
to SGD and is an upper bound on the true rank. SupRank leads to
smooth losses that are upper bounds of the true losses. At training
time, we additionally introduce a novel objective to reduce the
non-decomposability of smooth rank losses without the need to
increase the batch size.

Our framework for end-to-end training of DNN is illustrated
in Fig. 1. Using a DNN fθ we encode both the query and the other
images of the batch. Optimizing the rank loss supports the correct–
partial–ordering in a batch based on our surrogate of the rank,
SupRank. Optimizing the decomposability loss supports that the pos-
itives will be ranked before negative items , even those that are not
present in the batch. Both losses are amenable to gradient descent,
which makes possible to update the model parameters with SGD.

Our framework can be used to optimize rank losses for both
hierarchical and non-hierarchical image retrieval. In a first time we
show how to instantiate our framework to non-hierarchical image
retrieval by optimizing two ranking-based metrics, namely AP
and R@k. We show the importance of the two components of our
framework in ablation studies. Using our AP surrogate, we achieve
state-of-the-art image retrieval performances across 3 datasets and
3 neural networks architectures.

In a second instantiation we focus on hierarchical image
retrieval [33]–[35]. Because metrics used to evaluate fine-grained
image retrieval rely on binary labels, i.e. similar or dissimilar, they
are unable to take into account the severity of the errors. This
leads methods that optimize this metrics to lack robustness: they
tend to make severe errors when they make some. Hierarchical
image retrieval can be used to mitigate this issue by taking into
account non-binary similarity between labels. We introduce the
hierarchical average precision, H-AP, a new metric that extends
the AP to non-binary settings. Using our optimization framework,
we exhibit how optimizing the H-AP and the well known NDCG
leads to competitive results for fine-grained image retrieval metrics,
while outperforming by large margins both binary methods and
hierarchical baselines when considering hierarchical metrics.

Finally we introduce the first hierarchical landmarks retrieval
dataset, H-GLDv2, extending the well-known Google Landmarks

https://orcid.org/0000-0002-0131-2458
https://orcid.org/0000-0001-6486-3102
https://orcid.org/0000-0002-9899-3201
https://orcid.org/0000-0002-4214-6185
https://orcid.org/0009-0006-7254-6178
https://orcid.org/0000-0003-4871-3045
https://github.com/cvdfoundation/google-landmark
https://github.com/elias-ramzi/SupRank

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

Fig. 1: Illustration of our unified framework which supports both hierarchical and non-hierarchical cases. We use a deep neural network fθ to
embed images. We then optimize its weights in an end-to-end manner using two losses: 1) we optimize the ranking-based evaluation metric
using an upper bound approximation of the rank, rank−s , as described in Sec. III-B, enforcing the batch’s positive embeddings to have higher
cosine similarity with the query than the batch’s negatives; 2) we reduce the decomposability gap, DG, of rank losses using a decomposabil-
ity loss as described in Sec. III-C, that supports that positives have higher similarity with the query than all negatives even outside the batch.

v2 landmarks retrieval (GLDv2) dataset [36]. While landmarks
retrieval has been one of the most popular domain in image retrieval
it lacks a hierarchical dataset. H-GLDv2 is a large scale dataset with
1.4m images and three levels of hierarchies: including 100k unique
landmarks, 78 super-categories and 2 final labels. The labels are
publicly available at github.com/cvdfoundation/google-landmark.

Initial results of our work have been presented in [35], [37]. In this
work, we unify the methods from these two papers into a framework
for the optimization of rank losses, naturally supporting both
standard and hierarchical image retrieval problems. Additionally,
we include more comprehensive experiments, to consider different
decomposability objectives, apply our framework to the recent
R@k loss [28] and optimize the NDCG in the hierarchical setting.
Finally, in this work we introduce the first hierarchical image
retrieval dataset in the domain of landmarks, which is incorporated
for a more comprehensive benchmarking of our method.

II. RELATED WORK

A. Image Retrieval proxy losses

The Image Retrieval community has designed several families of
methods to optimize metrics such as AP and R@k. Methods that rely
on tuplet-wise losses, like pair losses [1]–[3], triplet losses [4]–[6], or
larger tuplets [7]–[9] learn comparison relations between instances.
These metric learning methods optimize a very coarse upper bound
on AP and need complex post-processing and tricks to be effective.
Other methods using proxies have been introduced to lower the
computational complexity of tuplet based training [10]–[15]: they
learn jointly a deep model and weight matrix that represent proxies
using a cross-entropy based loss. Proxies are approximations of the
original data points that should belong to their neighborhood.

B. Rank loss approximations

Studying smooth rank surrogate losses has a long history. One
option for training with rank losses is to design smooth upper bounds.

Seminal works are based on structural SVMs [16], [17], with exten-
sions to speed-up the ”loss-augmented inference” [18] or to adapt to
weak supervision [19] were designed to optimize AP. Generic black-
box combinatorial solvers have been introduced [20] and applied to
AP optimization [32]. To overcome the brittleness of AP with respect
to small score variations, an ad hoc perturbation is applied to positive
and negative scores during training. These methods provide elegant
AP upper bounds, but generally are coarse AP approximations.

Other approaches rely on designing smooth approximations of
the the rank function. This is done in soft-binning techniques [21]–
[25] by using a smoothed discretization of similarity scores. Other
approaches rely on explicitly approximating the non-differentiable
rank functions using neural networks [26], or with a sum of
sigmoid functions in the Smooth-AP approach [27] or the more
recent Smooth-Recall loss [28]. These approaches enable accurate
surrogates by providing tight and smooth approximations of the
rank function. However, they do not guarantee that the resulting
loss is an upper bound on the true loss. The SupRank introduced in
this work is based on a smooth approximation of the rank function
leading to an upper bound on the true loss, making our approach
both accurate and robust.

C. Decomposability in AP optimization

Batch training is mandatory in deep learning. However, the
non-decomposability of AP is a severe issue, since it yields an
inconsistent AP gradient estimator.

Non-decomposability is related to sampling informative
constraints in simple AP surrogates, e.g. triplet losses, since the
constraints’ cardinality on the whole training set is prohibitive. This
has been addressed by efficient batch sampling [29], [30], [38] or
selecting informative constraints within mini-batches [7], [30], [39],
[40]. In cross-batch memory technique [31], the authors assume
a slow drift in learned representations to store them and compute
global mining in pair-based deep metric learning.

https://github.com/cvdfoundation/google-landmark

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

In AP optimization, the non-decomposability has essentially
been addressed by a brute force increase of the batch size [20], [24],
[25], [28]. This includes an important overhead in computation
and memory, generally involving a two-step approach for first
computing the AP loss and subsequently re-computing activations
and back-propagating gradients. In contrast, our loss does not add
any overhead and enables good performances for AP optimization
even with small batches.

D. Hierarchical predictions and metrics

There has been a recent regain of interest in Hierarchical
Classification (HC) [41]–[43], to learn robust models that make
“better mistakes” [42]. However HC is evaluted in closed set, i.e.
train and test classes are the same. Whereas, hierarchical image
retrieval considers the open set paradigm, where classes are distinct
between train and test sets to better evaluate the generalization
abilities of learned models.

The Information Retrieval community uses datasets where
documents can be more or less relevant depending on the query [44],
[45]. The quality of their retrieval engine is quantified using
ranking based metrics such as the NDCG [46], [47]. Several works
have investigated how to optimize the NDCG, e.g. using pairwise
losses [48] or smooth surrogates [49]–[52]. These works however
focused on NDCG, and are without any theoretical guarantees: the
surrogates are approximations of the NDCG but not lower bounds,
i.e. their maximization does not imply improved performances
during inference. An additional drawback is that NDCG does not
relate easily to average precision [53], the most common metric in
image retrieval. Fortunately, there have been some works done to
extend AP in a graded setting where relevance between instances is
not binary [54], [55]. The graded Average Precision from [54] is the
closest to our work as it leverages SoftRank for direct optimization
of non-binary relevance, although there are significant shortcomings.
There is no guarantee that the SoftRank surrogate actually minimizes
the graded AP, it requires to annotate datasets with pairwise rele-
vances which is impractical for large scale settings in image retrieval.

Recently, the authors of [33] introduced three new hierarchical
benchmarks datasets for image retrieval, in addition to a novel
hierarchical loss CSL. CSL extends proxy-based triplet losses to the
hierarchical setting. However, this method faces the same limitation
as triplet losses: minimizing CSL does not explicitly optimize a
well-behaved hierarchical evaluation metric, e.g. H-AP. We show
experimentally that our method significantly outperforms CSL [33]
both on hierarchical metrics and AP-level evaluations.

E. Hierarchical datasets

Hierarchical trees are available for a large number of datasets,
such as CUB-200-2011 [56], Cars196 [57], InShop [58], Stanford
Online Products [59], and notably large-scale ones such as
iNaturalist [60], the three DyML datasets [33] and Imagenet [61].
Hierarchical labels are also less difficult to obtain than fine-grained
ones since hierarchical relations can be semi-automatically obtained
by grouping fine-grained labels. This was previously done by [43]
or by using the large lexical database Wordnet [62] e.g. for Imagenet
in [61] and for the SUN database in [63]. In the same spirit, we
introduce for the first time a hierarchical dataset for the landmark
instance retrieval problem: H-GLDv2. We extend the well-known

Google Landmarks Dataset v2 [36] with hierarchical labels using
a semi-automatic pipeline, leveraging category labels mined from
Wikimedia commons and substantial manual cleaning.

III. SMOOTH AND DECOMPOSABLE RANK LOSSES

A. Preliminaries

Let us consider a retrieval set Ω = {xj}j∈J1;NK composed
of N elements, and a set of M queries Q. For each query qi,
each element in Ω is assigned a relevance rel(xj,qi) ∈ R [44],
such that rel(xj,qi) > 0 (resp. rel(xj,qi) = 0) if xj is relevant
(resp. irrelevant) with respect to qi. For the standard image
retrieval discussed in Sec. IV, rel(xj,qi) = 1 if xj and qi share
the same fine-grained label and 0 otherwise. In the hierarchical
image retrieval setting rel(xj,qi) models more complex pairwise
relevance discussed in Sec. V. A positive relevance defines the set
of positives for a query, i.e. Ω+

i := {xj∈Ω|rel(xj,qi)>0}, i.e. a
positive instance in standard image retrieval or an instance with
relevance greater than 0 in the hierarchical case. Instances with a
relevance of 0 are the negatives, i.e. Ω−

i :={xj∈Ω|rel(xj,qi)=0}.
For each xj ∈ Ω, we compute its embedding vj ∈ Rd.

To do so we use a neural network fθ parameterized by θ:
vj :=fθ(xj). In the embedding space Rd, we compute the cosine
similarity score between each query qi and each element in Ω:
s(qi,xj)=vqi

Tvj/||vqi
||·||vj||.

During training, our goal is to optimize, for each query qi, the
model parameters θ such that the ranking, i.e. decreasing order of
cosine similarity, matches the ground truth ranking, i.e. decreasing or-
der of relevances. More precisely, we optimize a ranking-based met-
ric 0≤Mi≤1 that penalizes inversion between positive instances
and negative ones. The target loss is averaged over all queries:

LM(θ)=1− 1

M

M∑
i=1

Mi(θ) (1)

As previously mentioned, there are two main challenges with
SGD optimization of rank losses: i) they are not differentiable with
respect to θ, and ii) they do not linearly decompose into batches. We
propose to address both issues: we introduce a robust differentiable
ranking surrogate, SupRank (Sec. III-B), and add a decomposable
objective (Sec. III-C) to improve rank losses’ behavior in a batch
setting. Our final RObust and Decomposable (ROD) loss LROD-M
combines a differentiable surrogate loss of a target ranking-based
metric, LSup-M, and the decomposable objective LDG with a linear
combination, weighted by the hyper-parameter λ:

LROD-M(θ)=(1−λ)·LSup-M(θ)+λ·LDG(θ) (2)

B. SupRank: smooth approximation of the rank

The non-differentiablity in rank losses comes from the ranking
operator, which can be viewed as counting the number of instances
that have a similarity sj greater than the considered instance xk—for
readability we drop the dependence on θ and on the query qi—, i.e.:

rank(k)=1+
∑
j∈Ω≥

k

H(sj−sk)

︸ ︷︷ ︸
rank+(k)

+
∑
j∈Ω<

k

H(sj−sk)

︸ ︷︷ ︸
rank−(k)

(3)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

(a) H+(t)=H(t) in Eq. (3) (b) H−(t) in Eq. (4) (c) Sigmoid used in [27]

Fig. 2: Proposed surrogate losses for the Heaviside (step), for t=sj−sk: with H+ in Fig. 2a and H− in Fig. 2b. Using H− in Eq. (5)
leads to smooth and upperbounds rank losses. In addition, H− back-propagates gradients until the correct ranking is satisfied, in contrast
to the sigmoid used in [27] (Fig. 2c).

where H is the Heaviside (step) function H(t) = 1 if t ≥
0, 0 otherwise; Ω≥

k = {xp∈Ω|rel(xp,q)≥rel(xk,q)}, i.e. the
set of instances with a relevance greater or equal to k’s, and
Ω<
k = {xp∈Ω|rel(xp,q)<rel(xk,q)} the set of instances with a

relevance strictly lower to k’s (in standard IR Ω<
k =Ω−). Note that

for both rank+(k) and rank−(k) in Eq. (3) k is always positive,
i.e. in Ω+, and xj can either be negative, i.e. in Ω−, in rank− or
positive in rank+, i.e. in Ω+.

From Eq. (3) it becomes clear that the rank is non-amenable to
gradient descent optimization due to the Heaviside (step) function
H (see Fig. 2a), whose derivatives are either zero or undefined.
SupRank. To provide rank losses amenable to SGD, we introduce a
smooth approximation of the rank function. We propose a different
behavior between rank+(k) and rank−(k) in Eq. (3) by defining
two functions H+ and H−. For rank+(k), we keep the Heaviside
function, i.e. H+ = H (see Fig. 2a). This ignores rank+(k) in
gradient-based ranking optimization. It has been observed in other
works that optimizing rank− is sufficient [64]. For rank−(k) we
want smooth surrogate H− for H that is a amenable to SGD and
an upper bound on the Heaviside function. We define the following
H− function for t∈R, illustrated in Fig 2b, that is both:

H−(t)=

σ(tτ) if t≤0

σ(tτ)+0.5 if t∈ [0;δ] with δ≥0

ρ·(t−δ)+σ(δτ)+0.5 if t>δ

(4)

where σ is the sigmoid function (Fig. 2c), δ the offset of the linear
section, ρ the slope of the linear section, and τ the temperature of the
sigmoid that controls the margin on Fig. 2b are hyper-parameters.
δ is chosen such that the sigmoidal part of H− reaches the
saturation regime and is fixed for the rest of the paper (see
supplementary Sec. A-C). We keep τ as in [27] and study the
robustness to ρ in Sec. VII-A4.

From H− in Eq. (4), we define the following rank surrogate that
can be used plug-and-play for rank losses optimization:

rank−s (k)=
∑
j∈Ω<

k

H−(sj−sk) (5)

SupRank has two main features:
▶ 1 Surrogate losses based on SupRank are upper bound

of the target metrics , since H− in Eq. (4) is an upper bound of a
step function (Fig 2b). This is an important property, since it ensures
that the model keeps training until the correct ranking is obtained.

It is worth noting that existing smooth rank approximations in the
literature [21], [24], [25], [27] do not fulfill this property.

▶ 2 SupRank brings training gradients until the correct
ranking plus a margin is fulfilled. When the ranking is incorrect,
an instance with a lower relevancexj is ranked before an instance of
higher relevance xk, thus sj>sk and H−(sj−sk) in Eq. (4) has a
non-zero derivative. We use a sigmoid to have a large gradient when
sj−sk is small. To overcome vanishing gradients of the sigmoid
for large values sj−sk, we use a linear function ensuring constant
ρ derivative. When the ranking is correct (sj < sk), we enforce
robustness by imposing a margin parameterized by τ (sigmoid
in Eq. (4)). This margin overcomes the brittleness of rank losses,
which vanish as soon as the ranking is correct [20], [22], [24].

C. Decomposable rank losses
As illustrated in Eq. (1), rank losses decompose linearly between

queries qi, but do not between retrieved instances. We therefore
focus our analysis of the non-decomposability on a single query. For
a retrieval set Ω of N elements, we consider {Bb}b∈{1:K} batches
of size B, such that N/B=K ∈N. Let Mb(θ) be the metric M
in batch b for a query, we define the “decomposability gap” DG as:

DG(θ)=M(θ)− 1

K

K∑
b=1

Mb(θ) (6)

DG in Eq. (6) is a direct measure of the non-decomposability of
any metric M (illustrated for AP in Sec. A-A). Our motivation
here is to decrease DG, i.e. to have the average metric over the
batches as close as possible to the metric computed over the whole
training set. To this end, we use a additional objective during
training that aims at reducing the non-decomposability.
Pair-based decomposability loss. We use the following
decomposability loss LDG that was first introduced in
ROADMAP [37], and used in other work [65] to reduce
the non-decomposability of ranking losses:

LDG(θ)=
1

|Ω+|
∑

xj∈Ω+

[α−sj]++
1

|Ω−|
∑

xj∈Ω−

[sj−β]+ (7)

where [x]+ =max(0,x). LDG is a pair-based loss [2], which we
revisit in our context to “calibrate” the scores between mini-batches.
Intuitively, the fact that the positive (resp. negative) scores are above
(resp. below) a threshold α (resp. β) in the mini-batches makes Mb

closer to M, which we support with an analysis in Sec. A-B.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

Proxy-based decomposability loss. In HAPPIER [35] we used
the following proxy-based loss as the decomposability objective:

L∗
DG(θ)=−log

 exp(
vT
y py
η)∑

pz∈Zexp(
vT
y pz
η)

, (8)

where py is the normalized proxy corresponding to the fine-grained
class of the embedding vy, Z is the set of proxies, and η is a
temperature scaling parameter. L∗

DG is a classification-based proxy
loss [11] that imposes a margin instances and the proxies. L∗

DG has
thus a similar effect toLDG on the decomposability of rank losses. In
our experiments we show that both decomposability losses improve
ranking losses optimization.

IV. INSTANTIATION TO STANDARD IMAGE RETRIEVAL

In this section we apply the framework described previously to
standard image retrieval where rel(x,q)∈ {0,1}. Specifically we
show how to directly optimize two metrics that are widely used in
the image retrieval community, i.e. AP and R@k.

A. Application to Average Precision

The average precision measures the quality of a ranking by
penalizing inversion between positives and negatives. It strongly
penalizes inversion at the top of the ranking. It is defined for each
query qi as follows:

APi=
1

|Ω+
i |

∑
k∈Ω+

i

rank+(k)
rank(k)

(9)

The overall AP loss LAP is averaged over all queries:

LAP(θ)=1− 1

M

M∑
i=1

APi(θ) (10)

Using our surrogate of the rank, SupRank, we define the
following AP surrogate loss:

LSup-AP(θ)=1− 1

M

M∑
i=1

1

|Ω+
i |

∑
k∈Ω+

i

rank+(k)
rank+(k)+rank−s (k)

(11)

Finally we equip the AP surrogate loss with the LDG loss to
support the decomposability of the AP, yielding our RObust And
DecoMposable Average Precision:

LROADMAP(θ)=(1−λ)·LSup-AP(θ)+λ·LDG(θ) (12)

B. Application to the Recall at k

Another metric often used in image retrieval is the recall rate at
k. In the image retrieval community it is often defined as:

R@k=
1

M

M∑
i=1

1(positive element in top-k) (13)

However in the literature the recall is most often defined as:

TR@k=
1

M

M∑
i=1

positive elements in top-k
min(k,# positive elements)

(14)

It was shown in [28] that the TR@k can be written similarly to
other ranking-based metrics, i.e. using the rank, for each query qi as:

TR@k=
1

M

M∑
i=1

1

min(|Ω+
i |,k)

∑
p∈Ω+

i

H(k−rank(p)) (15)

Using the expression of Eq. (15) and SupRank we can derive
a surrogate loss function for the recall for a single query as:

LSup-R@k=1− 1

min(|Ω+|,k)
∑
p∈Ω+

σ

(
k−(rank+(p)+rank−s (p))

τ∗

)
(16)

The authors of [28] use different level of recalls in their loss, which
we follow i.e. LSup-R@K = 1

|K|
∑

k∈K LSup-R@k, it is necessary
to provide enough gradient signal to all positive items. To train
LSup-R@k, it is also necessary to approximate a second time the
Heaviside function, using a sigmoid with temperature factor τ∗.
We combine it with LDG yielding the resulting differentiable and
decomposable R@k loss:

LROD-R@K=(1−λ)·LSup-R@K+λ·LDG (17)

V. INSTANTIATION TO HIERARCHICAL IMAGE RETRIEVAL

Standard metrics (e.g. AP or R@k) are only defined for binary
labels, i.e. fine-grained labels: an image is negative if it is not
strictly similar to the query. These metrics are by design unable
to take into account the severity of the mistakes. To mitigate this
issue we propose to optimize a new ranking-based metric, H-AP
introduced in Sec. V-A, that extends AP beyond binary labels, and
the standard NDCG in Sec. V-B.

Additional training context. We assume that we have access to
a hierarchical tree defining semantic similarities between concepts
as in Fig. 3. For a query q, we partition the set of retrieved instances
into L+1 disjoint subsets

{
Ω(l)

}
l∈J0;LK. Ω

(L) is the subset of the
most similar instances to the query (i.e. fine-grained level): e.g.
on Fig. 3 given the query in purple, Ω(3) consists of all images of
“Lada #2” (green), i.e. same fine-grained classes as the query. For
l<L, Ω(l) contains instances with smaller relevance with the query.
For instance, Ω(2) in Fig. 3 is the set of “Lada” cars that are not
of the same fine-grained class as the query (i.e. “Lada #2”), in light
blue. We define Ω− :=Ω(0) as the set of negative instances, i.e. the
set of vehicles that are not “Cars”, e.g. Pickups or Buses (in red).
Finally, we define Ω+ =

⋃L
l=1Ω

(l). Given a query q, we use this
partition to define the relevance of k∈Ω(l), rel(k):=rel(xk,q).

A. Hierarchical Average Precision

We propose an extension of AP that leverages non-binary
labels. To do so, we extend rank+ to the hierarchical case with a
hierarchical rank+, H-rank+:

H-rank+(k)=rel(k)+
∑
j∈Ω+

min(rel(k),rel(j))·H(sj−sk) .

(18)
Intuitively, min(rel(k), rel(j)) corresponds to seeking the

closest ancestor shared by instance k and j with the query in
the hierarchical tree. As illustrated in Fig. 4, H-rank+ induces a
smoother penalization for instances that do not share the same

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

Vehicles

Cars Pickup Bus

Mini PriusLada

Prius #4

Lada #2Lada #1 Lada #9

Fig. 3: We leverage a hierarchical tree representing the semantic
similarities between concepts to produce more robust ranking.

Query Image:
Lada #2

Fig. 4: Given a “Lada #2” query, the top inversion is less severe than
the bottom one. Indeed on the top row instance 1 is semantically
closer to the query – it is a “Lada”– than instance 3 on the bottom
row. As instance 3’s closest common ancestor with the query, “Cars”,
is farther in the hierarchical tree Fig. 3. This is why H-rank+(2)
is greater on the top row (5/3) than on the bottom row (4/3).

fine-grained label as the query but still share some coarser semantics,
which is not the case for rank+.

From H-rank+ in Eq. (18) we define the Hierarchical Average
Precision, H-AP:

H-AP=
1∑

k∈Ω+rel(k)

∑
k∈Ω+

H-rank+(k)
rank(k)

(19)

Eq. (19) extends the AP to non-binary labels. We replace rank+

by our hierarchical rank H-rank+ and the term |Ω+| is replaced
by

∑
k∈Ω+rel(k) for proper normalization (both representing the

“sum of positives”, see more details in Sec. B-B1).
H-AP extends the desirable properties of the AP. It evaluates the

quality of a ranking by: i) penalizing inversions of instances that
are not ranked in decreasing order of relevances with respect to the
query, ii) giving stronger emphasis to inversions that occur at the
top of the ranking. Finally, we can observe that, by this definition,
H-AP is equal to the AP in the binary setting (L=1). This makes
H-AP a consistent generalization of AP (details in Sec. B-B2).

1) Relevance function design: The relevance rel(k) defines how
“similar” an instance k∈Ω(l) is to the query q. While rel(k) might
be given as input in information retrieval datasets [66], [67], we
need to define it based on the hierarchical tree in our case. We want
to enforce the constraint that the relevance decreases when going
up the tree, i.e. rel(k)>rel(k′) for k∈Ω(l), k′∈Ω(l′) and l>l′. To
do so, we assign a total weight of (l/L)α to each semantic level

l, where α∈R+ controls the decrease rate of similarity in the tree.
For example for L=3 and α=1, the total weights for each level
are 1, 2

3 , 1
3 and 0. The instance relevance rel(k) is normalized by

the cardinal of Ω(l):

rel(k)=
(l/L)α

|Ω(l)| if k∈Ω(l) (20)

We set α=1 in Eq. (20) for the H-AP metric and in our main
experiments. Setting α to larger values supports better performances
on fine-grained levels as their relevances will relatively increase.
This variant is discussed in Sec. VII-C. Other definitions of
the relevance are possible, e.g. an interesting option for the
relevance enables to recover a weighted sum of AP, denoted as∑

wAP :=
∑L

l=1wl · AP(l) (supplementary Sec. B-B3), i.e. the
weighted sum of AP is a particular case of H-AP.

2) Hierarchical Average Precision Training for Pertinent Image
Retrieval: We define our surrogate loss to optimize H-AP:

LSup-H-AP=1− 1

M

M∑
i=1

1∑
k∈Ω+

i

rel(k)

∑
k∈Ω+

i

H-rank+(k)
rank+(k)+rank−s (k)

(21)
Note that in the hierarchical case rank−(k) is the number of

instances of relevances <rel(k) meaning that it may contain images
that are similar to some extent to the query. Finally our ranking
loss, Hierarchical Average Precision training for Pertinent ImagE
Retrieval (HAPPIER), is obtained by adding L∗

DG:

LHAPPIER=(1−λ)·LSup-H-AP+λ·L∗
DG (22)

B. Application to the NDCG
The NDCG [46], [47] is a common metric in the information

retrieval community. The NDCG is defined using a relevance that
is not required to be binary:

DCGi=
∑
k∈Ω+

i

rel(k)

log2(1+rank(k))

iDCGi=max
rank

DCGi

NDCG=
1

M

M∑
i=1

DCGi

iDCGi
(23)

We choose the following relevance function for the NDCG:
rel(k)=2l−1, if k∈Ω(l). Using the exponentiation is a standard
procedure in information retrieval [47] as it allows to put more
emphasis on instances of higher relevance. We then use similarly to
other rank losses our SupRank surrogate. We use it to approximate
the DCG, and thus the NDCG:

DCGi,s=
∑
k∈Ω+

i

rel(k)

log2(1+rank+(k)+ranks(k))

LSup-NDCG=1− 1

M

M∑
i=1

DCGi,s

iDCGi
(24)

Note that once again our surrogate loss, LSup-NDCG, is an upper
bound on the true loss 1−NDCG. Finally our training loss is:

LROD-NDCG=(1−λ)·LSup-NDCG+λ·L∗
DG (25)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

(a) Screen captures of Wikimedia Commons webpages. (b) Waterfall. (c) Bridge. (d) Castle.

Fig. 5: Fig. 5a depicts the “Instance of” (within red rectangles), from which we collect hierarchical landmark labels: e.g. lake, waterfall,
mosque. Figs. 5b to 5d illustrate some of the supercategories of our H-GLDv2 dataset.

VI. HIERARCHICAL LANDMARK DATASET

One of the most popular domains for image retrieval research
is that of human-made and natural landmarks [36], [68]–[71]. In
this work, we introduce for the first time a hierarchical dataset in
this domain: H-GLDv2, building on top of the Google Landmarks
Dataset v2 (GLDv2) [36], which is the largest and most diverse
landmark dataset. In the following, we present our process to
semi-automatically annotate GLDv2 with an initial scraping
of hierarchical labels from Wikimedia Commons, and a 2-step
post-processing of the supercategories. We illustrate some of the
created groups in Figs. 5b to 5d. These hierarchical labels are
released under the CC BY 4.0 license.

A. Scraping Wikimedia Commons

The landmarks from GLDv2 are sourced from Wikimedia
Commons, the world’s largest crowdsourced collection of landmark
photos. After careful inspection, we find that many of the landmarks
in GLDv2 can be associated to supercategories by leveraging
the “Instance of” annotations available in Wikimedia Commons
– see Fig. 5a. Out of the original 203k landmarks in GLDv2-train,
we were able to scrape supercategories for 129.1k. For the 101k
landmarks in GLDv2-index, we were able to scrape supercategories
for 68.1k. A lightweight manual cleaning process was then applied
to remove landmarks assigned to more than one supercategory and
those with irrelevant supercategories (e.g., supercategories named
“Wikimedia category” or “Wikimedia disambiguation page”).
Approximately 0.25% of landmarks end up being removed in this
process, leading to a total number of selected landmarks of 128.8k
and 67.9k for the train and index dataset splits, respectively. The
number of unique scraped supercategories is 5.7k.

B. Post-processing supercategories

The scraped supercategories are noisy and do not have the same
level of granularity, e.g. “church building” v.s. “church building
(1172–1954)”. To mitigate this issue after the scraping we perform
a two step post-processing to obtain the final supercategories.

1) K-means clustering: We first encode all the labels using the
CLIP [72] textual encoder. We perform a k-means on the
latent representations. This initial clustering allows to show
different prominent categories, e.g. “Church”, “Castle” etc.

2) Manual verification: We manually assess the obtained
clusters based on the scraped label names. We create semantic

groups by dividing the k-means clusters into sub-clusters.
This leads to 78 supercategories that we further group into
human-made and natural landmarks. Two expert annotators
comprehensively reviewed the final clusters manually and
filtered them to produce a high-quality dataset.

C. Discussion and limitations

H-GLDv2 is a large scale dataset we were thus not able to
manually check all images. This leads to a dataset that can have
some noise. We release along with H-GLDv2 the scraped labels to
allow further work on the “supercategories”. Another difficulty of
H-GLDv2 is the ambiguity of some supercategories. For instance,
the bottom image of Fig. 5c is labeled as “Bridge”, however it could
be labeled as “River”, another supercategory. Finally, there is an
imbalance between supercategories that comes from the classes
represented in GLDv2 [36]. We report first results in Sec. VII-C3
of models trained on our H-GLDv2 dataset.

VII. EXPERIMENTS

A. Standard image retrieval.

In this section, we compare our methods on the standard image re-
trieval setup, i.e. rel(xi,xj)∈{0,1}, and report fine-grained metrics.
We use publicly available implementations of all baselines and run
all experiments under the same settings. We use a ResNet-50 back-
bone with average pooling, a normalization layer without affine pa-
rameters and a projection head that reduces the dimension from 2048
to 512. We use a batch size of 256 by sampling 4 images per class
and the hierarchical sampling of [24] for SOP, with resolution 224×
224, standard data augmentation (random resize crop, horizontal flip-
ping), the Adam optimizer (with learning rate of 5·10−5 on SOP and
1·10−5 on iNaturalist, with cosine decay) and train for 100 epochs.

1) Comparison to AP approximations: In Tab. I, we compare
ROADMAP to AP loss approximations including soft-binning
approaches Fast-AP [24] and SoftBin-AP [25], the generic solver
BlackBox-AP [32], and the smooth rank approximation [27].
We observe that ROADMAP outperforms all the current AP
approximations by a large margin. The gains are especially
pronounced on the large-scale dataset iNaturalist.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

TABLE I: Comparison between ROADMAP and state-of-the-art
AP ranking based methods.

SOP iNaturalist

Method R@1 mAP@R R@1 mAP@R

Fast-AP [24] 77.8 50.5 59.9 24.0
SoftBin-AP [25] 79.7 52.7 63.6 25.4
BlackBox-AP [32] 80.0 53.1 52.3 15.2
Smooth-AP [27] 80.9 54.3 67.3 26.5

ROADMAP 81.9 55.7 71.8 29.5

2) Ablation study.: To investigate more in-depth the impact of
the two components of our framework, we perform ablation studies
in Tab. II. We show the improvements against Smooth-AP [27] and
Smooth-R@k [28] when replacing the sigmoid by SupRank Eq. (10),
and the use of LDG Eq. (7) or L∗

DG Eq. (8). We can see that both
LSup-AP and LSup-R@k consistently improve performances over the
baselines, +0.5pt mAP@R on SOP and +1pt mAP@R on iNaturalist
for both Sup-AP and Sup-R@k. Both LDG and L∗

DG improve over
the smooth surrogates, with strong gains on iNaturalist, e.g. L∗

DG
improves by +2.9pt R@1 over Sup-AP and +3.7pt R@1 over Sup-
R@k. This is because the batch vs. dataset size ratio B

N is tiny (∼
8·10−4≪1), making the decomposability gap in Eq. (6) huge. On
SOP LDG and L∗

DG work similarly, however on iNat L∗
DG performs

far better than LDG. In the following, we choose to keep only L∗
DG.

TABLE II: Ablation study of the two components of our framework.
SOP iNaturalist

Method rank DG R@1 mAP@R R@1 mAP@R

Smooth-AP sigmoid ✗ 80.9 54.3 67.3 26.5
Sup-AP SupRank ✗ 81.2 54.8 68.9 27.5

ROADMAP SupRank LDG 81.7 55.7 69.1 27.6
L∗

DG 81.9 55.7 71.8 29.5

Smooth-R@k sigmoid ✗ 80.5 53.7 66.4 25.5
Sup-R@k SupRank ✗ 80.7 54.2 68.2 26.4

ROD-R@k SupRank LDG 82.4 56.6 69.3 27.0
L∗

DG 81.9 55.8 71.9 29.8

3) Analysis on decomposability: The decomposability gap
depends on the batch size Eq. (6). To illustrate this, we monitor
on Fig. 6 the relative improvement when adding L∗

DG to LSup-AP as
the batch size decreases. We can see that the relative improvement
becomes larger as the batch size gets smaller. This confirms our
intuition that the decomposability loss L∗

DG has a stronger effect on
smaller batch sizes, for which the AP estimation is noisier and DG
larger. This is critical on the large-scale dataset iNaturalist where
the batch AP on usual batch sizes is a very poor approximation of
the global AP.

3264128256384
0

5

10

15

20

25 22.8

13.1

6.7
4.13.5

(a) iNaturalist

3264128256384
0

2

4

6 5.5

2.5

1.4
0.70.7

(b) SOP
Fig. 6: Relative increase of mAP@R v.s. batch size when adding
L∗

DG to LSup-AP.
In Tab. III we compare ROADMAP to the cross-batch

memory [31] (XBM) which is used to reduce the gap between

batch-AP and global AP. We use XBM with a batch size of 128 and
store all the dataset, and use the setup described previously otherwise.
ROADMAP outperforms XBM both on SOP and iNaturalist with
gains more pronounced on iNaturalist with +12.5pt R@1 and +11
mAP@R. L∗

DG allows us to train models even with smaller batches.

TABLE III: Comparison between XBM [31] and ROADMAP.
SOP iNaturalist

Method R@1 mAP@R R@1 mAP@R

XBM [31] 80.6 54.9 59.3 18.5
ROADMAP 81.9 55.7 71.8 29.5

4) ROADMAP hyper-parameters: We demonstrate the
robustness of our framework to hyper-parameters in Fig. 7. Firstly,
Fig. 7a illustrates the complementarity between the two terms of
LROADMAP. For 0<λ<1, LROADMAP outperforms both LSup-AP and
L∗

DG. While we use λ=0.1 in our experiments, hyper-parameter
tuning could yield better results, e.g. with λ=0.3 LROADMAP has
72.1 R@1 v.s. 71.8 R@1 reported in Tab. I. Secondly, Fig. 7b shows
the influence of the slope ρ that controls the linear regime in H−.
As shown in Fig. 7b, the improvement is important and stable in
[10,100]. Note that ρ>1 already improves the results compared to
ρ=0 in [27]. There is a decrease when ρ≫103 probably due to the
high gradient that takes over the signal for correctly ranked samples.

0 0.1 0.3 0.5 0.7 0.9 1
68

69

70

71

72

m
A

P@
R

(a) R@1 v.s. λ for LROADMAP

10−1 100 101 102 103 104
26

26.5

27

27.5

(b) mAP@R v.s. ρ for LSup-AP

Fig. 7: Robustness to hyper-parameters on iNaturalist.
B. Comparison to state-of-the-art

In this section, we compare our AP approximation method,
ROADMAP, to state-of-the-art methods, on SOP, CUB, and iNatu-
ralist. We use ROADMAP with a memory [31] to virtually increase
the batch size. Note that using batch memory is less computationally
expensive than methods such as [28] which trade computational
time for memory footprint by using two forward passes. We apply
ROADMAP on both a convolutional backbone, ResNet-50 with
GeM pooling [68] and layer normalization, and Vision transformer
models [77], DeiT-S [78] (Imagenet-1k pre-trained as in [76])
and ViT-B (Imagenet21k pre-trained as in [28]). For convolutional
backbones, we choose to keep the standard images of size 224×224
for both training and inference on SOP and iNaturalist, and use more
recent settings [6], [15] for CUB and use images of size 256×256.
Vision transformers experiments use images of size 224×224.

In Tab. IV, using convolutional backbones, ROADMAP
outperforms most state-of-the-art methods when evaluated at
different (standard) R@k. As ROADMAP optimizes directly
the evaluation metrics, it outperforms metric learning and
classification-based methods, e.g. +1.4pt R@1 on SOP compared
to Triplet SCT [6] or +1.9pt R@1 on SOP v.s. ProxyNCA++ [15].
ROADMAP also outperforms R@k [28] with +1.2pt R@1 on SOP
and +1.3pt R@1 on iNaturalist. This is impressive as R@k [28] uses
a strong setup, i.e. a batch size of 4096 and Similarity mixup. On the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

TABLE IV: Comparison of state-of-the-art performances on R@K from the literature on SOP, CUB, and iNaturalist with the proposed
ROADMAP. Except for the ViT categories, all methods rely on a standard convolutional backbone (generally ResNet-50).

SOP CUB iNaturalist
Method dim 1 10 100 1 2 4 8 1 4 16 32

M
et

ric
le

ar
ni

ng

Triplet SH [5] 512 72.7 86.2 93.8 63.6 74.4 83.1 90.0 58.1 75.5 86.8 90.7
MS [9] 512 78.2 90.5 96.0 65.7 77.0 86.3 91.2 - - - -
SEC [73] 512 78.7 90.8 96.6 68.8 79.4 87.2 92.5 - - - -
HORDE [74] 512 80.1 91.3 96.2 66.8 77.4 85.1 91.0 - - - -
XBM [31] 128 80.6 91.6 96.2 65.8 75.9 84.0 89.9 - - - -
Triplet SCT [6] 512/64 81.9 92.6 96.8 57.7 69.8 79.6 87.0 - - - -

C
la

ss
ifi

ca
tio

n

ProxyNCA [10] 512 73.7 - - 49.2 61.9 67.9 72.4 61.6 77.4 87.0 90.6
ProxyGML [14] 512 78.0 90.6 96.2 66.6 77.6 86.4 - - - - -
NSoftmax [11] 512 78.2 90.6 96.2 61.3 73.9 83.5 90.0 - - - -
NSoftmax [11] 2048 79.5 91.5 96.7 65.3 76.7 85.4 91.8 - - - -
Cross-Entropy [75] 2048 81.1 91.7 96.3 69.2 79.2 86.9 91.6 - - - -
ProxyNCA++ [15] 512 80.7 92.0 96.7 69.0 79.8 87.3 92.7 - - - -
ProxyNCA++ [15] 2048 81.4 92.4 96.9 72.2 82.0 89.2 93.5 - - - -

R
an

ki
ng

FastAP [24] 512 76.4 89.0 95.1 - - - - 60.6 77.0 87.2 90.6
BlackBox [32] 512 78.6 90.5 96.0 64.0 75.3 84.1 90.6 62.9 79.4 88.7 91.7
SmoothAP [27] 512 80.1 91.5 96.6 - - - - 67.2 81.8 90.3 93.1
R@k [28] 512 82.8 92.9 97.0 - - - - 71.2 84.0 91.3 93.6
R@k + SiMix [28] 512 82.1 92.8 97.0 - - - - 71.8 84.7 91.9 94.3
ROADMAP (ours) 512 83.3 93.6 97.4 69.4 79 4 87.2 92.1 73.1 85.7 92.7 94.8

D
ei

T-
S IRTR [76] 384 84.2 93.7 97.3 76.6 85.0 91.1 94.3 - - - -

ROADMAP (ours) 384 85.2 94.5 97.9 77.6 86.2 91.6 95.0 74.7 86.9 93.4 95.4

V
iT

-B R@k + SiMix [28] 512 88.0 96.1 98.6 - - - - 83.9 92.1 95.9 97.2
ROADMAP (ours) 512 88.4 96.4 98.7 86.8 91.7 94.6 96.5 85.1 93.0 96.6 97.7

small-scale dataset CUB, our method is competitive with methods
such as ProxyNCA++ with the same embedding size of 512.

Finally, we show that ROADMAP also improves Vision
Transformers for image retrieval. With DeiT-S, ROADMAP
outperforms [76] on both SOP and CUB by +1pt R@1, this again
shows the interest of directly optimizing the metrics rather than
the pair loss of [31] used in [76]. With ViT-B, ROADMAP outper-
forms [28] by +0.4pt R@1 and +1.2pt R@1 on SOP and iNaturalist
respectively. We attribute this to the fact that our loss is an actual
upper bound of the metric, in addition to our decomposability loss.

C. Hierarchical Results

In this section, we show results on the hierarchical settings and
use the labels as described in the additional context of Sec. VI.
We report results using the experimental setting of Sec. VII-A.
Additionally to hierarchical metrics NDCG and H-AP, we report
ASI which is defined in Sec. C-A1.

On Tab. V, we show that HAPPIER significantly outperforms
methods trained on the fine-grained level only, with a gain on
H-AP over the best performing methods of +16.4pt H-AP on SOP,
+13pt on iNat-base and 10.7pt on iNat-full. HAPPIER also exhibits
significant gains compared to hierarchical methods. On H-AP,
HAPPIER has important gains on all datasets (e.g. +6.3pt on SOP,
+4.2pt on iNat-base over the best competitor), but also on ASI and
NDCG. This shows the strong generalization of the method on
standard metrics. Compared to the recent CSL loss [33], we observe
a consistent gain over all metrics and datasets, e.g. +6pt on H-AP,
+8pt on ASI and +2.6pts on NDCG on SOP. This shows the benefits
of optimizing a well-behaved hierarchical metric compared to an
ad-hoc proxy method. We observe similar trends on the three large
scale hierarchical benchmarks DyML [33] in Tab. VIII, that include
a Vehicle re-ID dataset, a wild-life dataset and a retail dataset.

Furthermore, we can see that HAPPIER performs on-par to the
best methods for standard image retrieval when considering fine-

grained metrics. HAPPIER has 81.0 R@1 on SOP v.s. 81.4 R@1
for NCA++, and even performs slightly better on iNat-base with
70.7 R@1 v.s. 70.2 R@1 for NSM. Finally, our variant HAPPIERF
for α>1 Sec. V-A1, performs as expected (α is 5 on SOP and 3 on
iNat-base/full): it is a strong method for fine-grained image retrieval,
and still outperforms standard methods on hierarchical metrics.

1) Detailed evaluation: HAPPIER performs well on the overall
hierarchical metrics because it performs well on all the hierarchical
level. We illustrate this on Tab. VI which reports the different
methods’ performances on all semantic hierarchy levels on iNat-full.
We evaluate HAPPIER and HAPPIERF. HAPPIER optimizes the
overall hierarchical performance, while HAPPIERF is meant to be
optimal at the fine-grained level without sacrificing coarser levels.
The satisfactory behavior and the two optimal regimes of HAPPIER
and HAPPIERF are confirmed on iNat-full: HAPPIER gives the
best results on coarser levels (from “Class”), while being very close
to the best results on finer ones. HAPPIERF gives the best results at
the finest levels, even outperforming very competitive fine-grained
baselines. HAPPIER also outperforms CSL [33] on all semantic
levels, e.g. +5pt on the fine-grained AP (“Species”) and +3pt on
the coarsest AP (“Kingdom”). We show the detailed evaluation on
SOP and iNat-base in Sec. C-A3.

2) Model analysis: We showcase the different behavior and
the robustness of HAPPIER when changing the hyper-parameters.
Fig. 8a studies the impact ofα for setting the relevance in Eq. (20).α
controls the balance between the relevance weight allocated to each
level. Increasing α puts more emphasis on the fine-grained levels,
on the contrary, diminishing its value will put an equal contribution
to all levels. This is illustrated in Fig. 8a: increasing α improves the
AP at the fine-grained level on iNat-base. Fig. 8a shows that one can
use α to obtain a range of performances for desired applications.

We measure the impact in Fig. 8b of λ for weighting Ls
H-AP

and LDG in HAPPIER: we observe a stable increase in H-AP

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

TABLE V: Comparison of HAPPIER on SOP and iNat-base/full. Best results in bold, second best underlined.

Method SOP iNat-base iNat-full

R@1 AP H-AP ASI NDCG R@1 AP H-AP ASI NDCG R@1 AP H-AP ASI NDCG

Fi
ne

Triplet SH [5] 79.8 59.6 42.2 22.4 78.8 66.3 33.3 39.5 63.7 91.5 66.3 33.3 36.1 59.2 89.8
NSM [11] 81.3 61.3 42.8 21.1 78.3 70.2 37.6 38.0 51.6 88.9 70.2 37.6 33.3 51.7 88.2
NCA++ [15] 81.4 61.7 43.0 21.5 78.4 67.3 35.2 39.5 57.0 90.1 67.3 35.2 35.3 55.7 89.0
Smooth-AP [27] 80.9 60.8 42.9 20.6 78.2 67.3 35.2 41.3 64.2 91.9 67.3 35.2 37.2 60.1 90.1

H
ie

r.

ΣTLSH [5] 78.3 57.6 53.1 53.3 89.2 54.7 21.3 44.0 87.4 96.4 52.9 19.7 39.9 85.5 92.0
ΣNSM [11] 79.4 58.4 50.4 49.7 87.0 69.5 37.5 47.9 75.8 94.4 67.2 36.1 46.9 74.2 93.8
ΣNCA++ [15] 76.3 54.5 49.5 52.8 87.8 64.2 35.4 48.9 78.7 95.0 67.4 36.3 44.7 74.3 92.6
CSL [33] 79.4 58.0 52.8 57.9 88.1 62.9 30.2 50.1 89.3 96.7 59.9 30.4 45.1 84.9 93.0

ROD-NDCG (ours) 80.5 59.6 58.3 65.0 91.1 70.7 35.9 53.1 87.8 96.6 71.2 36.7 44.8 81.1 93.1

HAPPIER (ours) 81.0 60.4 59.4 65.9 91.5 70.7 36.7 54.3 89.3 96.9 70.2 36.0 47.9 87.2 93.8
HAPPIERF (ours) 81.8 62.2 52.0 45.9 86.5 71.6 37.8 43.2 87.0 96.6 71.4 37.6 40.1 80.0 93.5

TABLE VI: Comparison of HAPPIER v.s. fine-grained methods and CSL on iNat-full. Metrics are reported for all 7 semantic levels.

Method Species Genus Family Order Class Phylum Kingdom
R@1 AP AP AP AP AP AP AP

Fi
ne

TLSH [5] 66.3 33.3 34.2 32.3 35.4 48.5 54.6 68.4
NSM [11] 70.2 37.6 38.0 31.4 28.6 36.6 43.9 63.0
NCA++ [15] 67.3 37.0 37.9 33.0 32.3 41.9 48.4 66.1
Smooth-AP [27] 67.3 35.2 36.3 33.5 35.0 49.3 55.8 69.9

H
ie

r. CSL [33] 59.9 30.4 32.4 36.2 50.7 81.0 87.4 91.3

HAPPIER (ours) 70.2 36.0 37.0 38.0 51.9 81.3 89.1 94.4
HAPPIERF (ours) 70.8 37.6 38.2 38.8 50.9 76.1 82.2 83.1

with 0 < λ < 0.5 compared to optimizing only Ls
H-AP, while a

drop in performance is observed for λ > 0.5. This shows the
complementarity of Ls

H-AP and L∗
DG, and how, when combined,

HAPPIER reaches its best performance.

1.0 1.5 2.0 3.0 4.0 5.0

α

36.8

37.0

37.2

37.4

37.6

A
P
fi
n
e

APfine

(a) APfine vs α in Eq. (20).

0.0 0.1 0.2 0.3 0.4 0.5 0.7

λ

48

49

50

51

52

53

54

H
-A
P

H-AP

(b) H-AP v.s. λ for LHAPPIER.
Fig. 8: Impact on iNat-base of α in Eq. (20) for setting the relevance
of H-AP (a) and of the λ hyper-parameter on HAPPIER results (b).

3) Hierarchical landmark results: In this section, we report first
results on our H-GLDv2 dataset. We run all experiments under
the same settings: we use a ResNet-101 with GeM pooling and
initialize a linear projection with a PCA [25]. We use a batch size of
256 and train for ∼55k steps with Adam and a learning rate of 10−5

decayed using a cosine schedule. We report the mAP@100 [36],
and the hierarchical metrics H-AP, ASI and NDCG.

TABLE VII: Comparison of ROADMAP and HAPPIER v.s.
baselines on H-GLDv2.
Method mAP@100 H-AP ASI NDCG

SoftBin [25] 39.0 35.2 74.6 94.4
Smooth-AP [27] 42.5 37.3 76.9 94.7
R@k [28] 41.6 36.8 77.1 94.7
ROADMAP 42.9 37.0 75.0 94.4

CSL [33] 37.5 36.2 85.4 95.7
HAPPIER 41.6 38.8 83.8 95.7
HAPPIERF 43.7 38.3 77.5 94.8

In Tab. VII we report the results of ROADMAP and HAPPIER
v.s. other fine-grained methods and hierarchical methods. Tab. VII
demonstrates once again the interest of our AP surrogate,
ROADMAP and HAPPIERF perform the best on the fine-grained
metric mAP@100. Furthermore, HAPPIER has the best hierarchical
results. It outperforms ROADMAP by +2.8pt H-AP and +8.8pt
ASI. It also outperforms CSL by +2.6pt H-AP.

4) Qualitative experiments: We assess qualitatively HAPPIER,
including embedding space analysis and visualization of
HAPPIER’s retrievals.

t-SNE: organization of the embedding space: In Figs. 9a and 9b,
we plot using t-SNE [79], [80] how HAPPIER learns an embedding
space on SOP (L= 2) that is well-organized. We plot the mean
vector of each fine-grained class, and we assign the color based on
the coarse level. We compare the t-SNE the embedding space of a
baseline (Smooth-AP [27]) on Fig. 9a and of HAPPIER in Fig. 9b.
We cannot observe any clear clusters for the coarse level on Fig. 9a,
whereas we can appreciate the quality of the hierarchical clusters
formed on Fig. 9b.

Controlled errors on iNat-base: Finally, we showcase in Figs. 9c
and 9d errors of HAPPIER v.s. a fine-grained baseline (Smooth-AP)
on iNat-base. On Fig. 9c, we illustrate how a model trained with
HAPPIER makes less severe mistakes than a model trained only
on the fine-grained level. On Fig. 9d, we show an example where
both models fail to retrieve the correct fine-grained instances,
however the model trained with HAPPIER retrieves images that are
semantically more similar to the query. This shows the robustness
of HAPPIER’s ranking.

VIII. CONCLUSION

In this work we have introduced a general framework for
rank losses optimization. It tackles two issues of rank losses

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

(a) t-SNE visualization of a model trained on
fine-grained labels with Smooth-AP [27].

(b) t-SNE visualization of a model trained
with HAPPIER.

Query image

H
AP

PI
ER

rank 1

Ba
se

lin
e

rank 2 rank 3 rank 4 rank 5 rank 6

(c) HAPPIER makes less severe mistakes. Its inversions are with instances sharing the same coarse label
(in orange) where the baseline (Smooth-AP [27]) has inversion with negative instances (in red).

Query image

H
AP

PI
ER

rank 1

Ba
se

lin
e

rank 2 rank 3 rank 4 rank 5 rank 6

(d) When models fail to retrieve the correct fine-grained images, HAPPIER still retrieves images with the
same coarse label (in orange) whereas the baseline (Smooth-AP [27]) retrieves negative instances (in red).

optimization: 1) non-differentiability using smooth and upper
bound rank approximation, 2) non-decomposability using an
additional objective. We apply our framework to both fine-grained,
by optimizing the AP and R@k, and hierarchical image retrieval,
by optimizing the NDCG and the introduced H-AP. We show
that using our framework outperforms other rank loss surrogates
on several standard fine-grained and hierarchical image retrieval
benchmarks, including the hierarchical landmark dataset we
introduce in this work. We also show that our framework sets
state-of-the-art results for fine-grained image retrieval.

ACKNOWLEDGMENT

This work was done under a grant from the the AHEAD ANR
program (ANR-20-THIA-0002) and had access to HPC resources
of IDRIS under the allocation AD011012645 made by GENCI.

REFERENCES

[1] E. Xing, M. Jordan, S. J. Russell, and A. Ng, “Distance metric learning with
application to clustering with side-information,” in NeurIPS, 2003.

[2] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning
an invariant mapping,” in CVPR, 2006.

[3] F. Radenovic, G. Tolias, and O. Chum, “CNN image retrieval learns from bow:
Unsupervised fine-tuning with hard examples,” in ECCV, 2016.

[4] A. Gordo, J. Almazán, J. Revaud, and D. Larlus, “End-to-end learning of deep
visual representations for image retrieval,” Int. J. Comput. Vis., 2017.

[5] C.-Y. Wu, R. Manmatha, A. J. Smola, and P. Krahenbuhl, “Sampling matters
in deep embedding learning,” in ICCV, 2017.

[6] H. Xuan, A. Stylianou, X. Liu, and R. Pless, “Hard negative examples are hard,
but useful,” in ECCV, 2020.

[7] K. Sohn, “Improved deep metric learning with multi-class n-pair loss objective,”
in NeurIPS, 2016.

[8] M. T. Law, N. Thome, and M. Cord, “Learning a distance metric from relative
comparisons between quadruplets of images,” Int. J. Comput. Vis., 2017.

[9] X. Wang, X. Han, W. Huang, D. Dong, and M. R. Scott, “Multi-similarity loss
with general pair weighting for deep metric learning,” in CVPR, 2019.

[10] Y. Movshovitz-Attias, A. Toshev, T. K. Leung, S. Ioffe, and S. Singh, “No
fuss distance metric learning using proxies,” in ICCV, 2017.

[11] A. Zhai and H. Wu, “Classification is a strong baseline for deep metric
learning,” BMVC, 2018.

[12] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and W. Liu,
“Cosface: Large margin cosine loss for deep face recognition,” in CVPR, 2018.

[13] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular margin
loss for deep face recognition,” in CVPR, 2019.

[14] Y. Zhu, M. Yang, C. Deng, and W. Liu, “Fewer is more: A deep graph metric
learning perspective using fewer proxies,” in NeurIPS, 2020.

[15] E. W. Teh, T. DeVries, and G. W. Taylor, “Proxynca++: Revisiting and
revitalizing proxy neighborhood component analysis,” in ECCV, 2020.

[16] Y. Yue, T. Finley, F. Radlinski, and T. Joachims, “A support vector method
for optimizing average precision,” in SIGIR, 2007.

[17] B. Mcfee and G. Lanckriet, “Metric learning to rank,” in ICML, 2010.
[18] P. Mohapatra, M. Roĺınek, C. Jawahar, V. Kolmogorov, and M. P. Kumar,

“Efficient optimization for rank-based loss functions,” in CVPR, 2018.
[19] T. Durand, N. Thome, and M. Cord, “Exploiting negative evidence for deep

latent structured models,” TPAMI, 2019.
[20] M. Vlastelica, A. Paulus, V. Musil, G. Martius, and M. Roĺınek, “Differentiation

of blackbox combinatorial solvers,” in ICLR, 2020.
[21] E. Ustinova and V. Lempitsky, “Learning deep embeddings with histogram

loss,” in NeurIPS, 2016.
[22] K. He, F. Cakir, S. A. Bargal, and S. Sclaroff, “Hashing as tie-aware learning

to rank,” in CVPR, 2018.
[23] K. He, Y. Lu, and S. Sclaroff, “Local descriptors optimized for average

precision,” in CVPR, 2018.
[24] F. Cakir, K. He, X. Xia, B. Kulis, and S. Sclaroff, “Deep metric learning to

rank,” in CVPR, 2019.
[25] J. Revaud, J. Almazán, R. S. Rezende, and C. R. d. Souza, “Learning with

average precision: Training image retrieval with a listwise loss,” in ICCV, 2019.
[26] M. Engilberge, L. Chevallier, P. Perez, and M. Cord, “Sodeep: A sorting deep

net to learn ranking loss surrogates,” in CVPR, 2019.
[27] A. Brown, W. Xie, V. Kalogeiton, and A. Zisserman, “Smooth-ap: Smoothing

the path towards large-scale image retrieval,” in ECCV, 2020.
[28] Y. Patel, G. Tolias, and J. Matas, “Recall@ k surrogate loss with large batches

and similarity mixup,” in CVPR, 2022.
[29] W. Ge, “Deep metric learning with hierarchical triplet loss,” in ECCV, 2018.
[30] Y. Suh, B. Han, W. Kim, and K. M. Lee, “Stochastic class-based hard example

mining for deep metric learning,” in CVPR, 2019.
[31] X. Wang, H. Zhang, W. Huang, and M. R. Scott, “Cross-batch memory for

embedding learning,” in CVPR, 2020.
[32] M. Roĺınek, V. Musil, A. Paulus, M. Vlastelica, C. Michaelis, and G. Martius,

“Optimizing rank-based metrics with blackbox differentiation,” in CVPR, 2020.
[33] Y. Sun, Y. Zhu, Y. Zhang, P. Zheng, X. Qiu, C. Zhang, and Y. Wei, “Dynamic

metric learning: Towards a scalable metric space to accommodate multiple
semantic scales,” in CVPR, 2021.

[34] W. Zheng, Y. Huang, B. Zhang, J. Zhou, and J. Lu, “Dynamic metric learning
with cross-level concept distillation,” in ECCV, 2022.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

[35] E. Ramzi, N. Audebert, N. Thome, C. Rambour, and X. Bitot, “Hierarchical
average precision training for pertinent image retrieval,” in ECCV, 2022.

[36] T. Weyand, A. Araujo, B. Cao, and J. Sim, “Google landmarks dataset v2-a
large-scale benchmark for instance-level recognition and retrieval,” in CVPR,
2020.

[37] E. Ramzi, N. Thome, C. Rambour, N. Audebert, and X. Bitot, “Robust and
decomposable average precision for image retrieval,” NeurIPS, 2021.

[38] B. Harwood, V. Kumar B G, G. Carneiro, I. Reid, and T. Drummond, “Smart
mining for deep metric learning,” in ICCV, 2017.

[39] F. Faghri, D. J. Fleet, J. R. Kiros, and S. Fidler, “VSE++: improving
visual-semantic embeddings with hard negatives,” in BMVC, 2018.

[40] M. Carvalho, R. Cadène, D. Picard, L. Soulier, N. Thome, and M. Cord,
“Cross-modal retrieval in the cooking context: Learning semantic text-image
embeddings,” in SIGIR, 2018.

[41] A. Dhall, A. Makarova, O. Ganea, D. Pavllo, M. Greeff, and A. Krause,
“Hierarchical image classification using entailment cone embeddings,” in
CVPR Workshops, 2020.

[42] L. Bertinetto, R. Mueller, K. Tertikas, S. Samangooei, and N. A. Lord,
“Making better mistakes: Leveraging class hierarchies with deep networks,”
in CVPR, 2020.

[43] D. Chang, K. Pang, Y. Zheng, Z. Ma, Y.-Z. Song, and J. Guo, “Your” flamingo”
is my” bird”: Fine-grained, or not,” in CVPR, 2021.

[44] B. Hjørland, “The foundation of the concept of relevance,” JIST, 2010.
[45] J. Kekäläinen and K. Järvelin, “Using graded relevance assessments in ir

evaluation,” JIST, 2002.
[46] K. Järvelin and J. Kekäläinen, “Cumulated gain-based evaluation of ir

techniques,” ACM TOIS, 2002.
[47] W. B. Croft, D. Metzler, and T. Strohman, Search engines: Information

retrieval in practice. Addison-Wesley Reading, 2010.
[48] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and

G. Hullender, “Learning to rank using gradient descent,” in ICML, 2005.
[49] C. Burges, R. Ragno, and Q. Le, “Learning to rank with nonsmooth cost

functions,” in NeurIPS, 2006.
[50] M. Taylor, J. Guiver, S. Robertson, and T. Minka, “Softrank: Optimizing

non-smooth rank metrics,” in WSDM, 2008.
[51] T. Qin, T.-Y. Liu, and H. Li, “A general approximation framework for direct

optimization of information retrieval measures,” Information Retrieval, 2009.
[52] S. Bruch, M. Zoghi, M. Bendersky, and M. Najork, “Revisiting approximate

metric optimization in the age of deep neural networks,” in SIGIR, 2019.
[53] G. Dupret and B. Piwowarski, “Model based comparison of discounted

cumulative gain and average precision,” Journal of Discrete Algorithms, 2013.
[54] S. E. Robertson, E. Kanoulas, and E. Yilmaz, “Extending average precision

to graded relevance judgments,” in SIGIR, 2010.
[55] G. Dupret and B. Piwowarski, “A user behavior model for average precision

and its generalization to graded judgments,” in SIGIR, 2010.
[56] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The

Caltech-UCSD Birds-200-2011 Dataset,” Caltech, Tech. Rep., 2011.
[57] J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3d object representations for

fine-grained categorization,” in 3dRR Workshop, 2013.
[58] Z. Liu, P. Luo, S. Qiu, X. Wang, and X. Tang, “Deepfashion: Powering robust

clothes recognition and retrieval with rich annotations,” in CVPR, 2016.
[59] H. O. Song, Y. Xiang, S. Jegelka, and S. Savarese, “Deep metric learning via

lifted structured feature embedding,” in CVPR, 2016.
[60] G. Van Horn, O. Mac Aodha, Y. Song, Y. Cui, C. Sun, A. Shepard, H. Adam,

P. Perona, and S. Belongie, “The inaturalist species classification and detection
dataset,” in CVPR, 2018.

[61] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A
large-scale hierarchical image database,” in CVPR, 2009.

[62] G. A. Miller, “Wordnet: A lexical database for english,” Commun. ACM, 1995.
[63] E. W. Wilt and A. V. Harrison, “Creating a semantic hierarchy of SUN database

object labels using WordNet,” in AI/ML for Multi-Domain Operations, 2021.
[64] Z. Li, W. Min, J. Song, Y. Zhu, L. Kang, X. Wei, X. Wei, and S. Jiang,

“Rethinking the optimization of average precision: Only penalizing negative
instances before positive ones is enough,” in AAAI, 2022.

[65] C. Liao, T. Tsiligkaridis, and B. Kulis, “Supervised metric learning for retrieval
via contextual similarity optimization,” arXiv, 2022.

[66] T. Qin and T. Liu, “Introducing LETOR 4.0 datasets,” CoRR, 2013.
[67] O. Chapelle and Y. Chang, “Yahoo! learning to rank challenge overview,” in

Proceedings of the learning to rank challenge, 2011.
[68] F. Radenović, A. Iscen, G. Tolias, Y. Avrithis, and O. Chum, “Revisiting

oxford and paris: Large-scale image retrieval benchmarking,” in CVPR, 2018.
[69] D. Chen, G. Baatz, K. Koser, S. Tsai, R. Vedantham, T. Pylvanainen,

K. Roimela, X. Chen, J. Bach, M. Pollefeys, B. Girod, and R. Grzeszczuk,
“City-Scale Landmark Identification on Mobile Devices,” in CVPR, 2011.

[70] Y. Avrithis, G. Tolias, and Y. Kalantidis, “Feature Map Hashing: Sub-linear
Indexing of Appearance and Global Geometry,” in Proc. ACM MM, 2010.

[71] A. Torii, R. Arandjelović, J. Sivic, M. Okutomi, and T. Pajdla, “24/7 place
recognition by view synthesis,” in Proc. CVPR, 2015.

[72] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,
A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever, “Learning
transferable visual models from natural language supervision,” in ICML, 2021.

[73] D. Zhang, Y. Li, and Z. Zhang, “Deep metric learning with spherical
embedding,” in NeurIPS, 2020.

[74] P. Jacob, D. Picard, A. Histace, and E. Klein, “Metric learning with horde:
High-order regularizer for deep embeddings,” in ICCV, 2019.

[75] M. Boudiaf, J. Rony, I. M. Ziko, E. Granger, M. Pedersoli, P. Piantanida,
and I. B. Ayed, “A unifying mutual information view of metric learning:
cross-entropy vs. pairwise losses,” in ECCV, 2020.

[76] A. El-Nouby, N. Neverova, I. Laptev, and H. Jégou, “Training vision
transformers for image retrieval,” arXiv, 2021.

[77] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is
worth 16x16 words: Transformers for image recognition at scale,” arXiv, 2020.

[78] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou,
“Training data-efficient image transformers & distillation through attention,”
arXiv, 2020.

[79] L. van der Maaten and G. Hinton, “Visualizing high-dimensional data using
t-sne,” Journal of Machine Learning Research, 2008.

[80] D. M. Chan, R. Rao, F. Huang, and J. F. Canny, “Gpu accelerated t-distributed
stochastic neighbor embedding,” JPDC, 2019.

[81] R. Fagin, R. Kumar, and D. Sivakumar, “Comparing top k lists,” JDM, 2003.
Elias Ramzi is a research scientist at valeo.ai. He
obtained a Ph.D in computer vision from Cnam in
2024 and a M.Eng from Supélec in 2020. His current
work focus on computer vision and deep learning for
autonomous driving.

Nicolas Audebert is an associate professor of computer
science at Cnam (Paris, France) since 2019. His research
focus on deep representation learning for computer
vision and Earth Observation. He graduated with a Ph.D.
from the University of South Brittany in 2018 and a
M.Eng. from Supélec in 2015.

Clément Rambour is an Assistant Professor at the
Cnam (Paris, France) since 2020. He obtained his Ph.D.
at Telecom Paris in 2019, specializing in 3D SAR
imaging. His research primarily revolves around machine
learning and deep learning for image understanding and
signal processing, focusing on natural images, remote
sensing and healthcare data.

André Araujo is a Senior Staff Research Scientist /
Tech Lead Manager at Google DeepMind. His current
work focuses on computer vision and machine learning.
He graduated with a Ph.D. from Stanford University in
2016. He is a Senior Member of the IEEE.

Xavier Bitot is a project leader at Coexya (France).
He graduated with a M.Eng. from École Nationale
Superieure de Physique de Strasbourg in 2002. He
supervises the Coexya SIP (Paris) entity R&D team on
content based text and image classification and retrieval
for industrial property.

Nicolas Thome is a full professor at Sorbonne Université
(Paris, France). His research interests include machine
learning and deep learning for understanding low-level
signals, e.g. vision, time series, acoustics, etc.. His current
application domains are targeted towards healthcare,
autonomous driving and physics.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

APPENDIX A
ADDITIONAL DETAILS ON METHOD

A. Decomposability gap: Average Precision

We remind the reader of the definition of the decomposability
gap given in Eq. (6) of the main paper.

DG(θ)=
1

K

K∑
b=1

APb
i(θ)−APi(θ)

We illustrates the decomposability gap, DG with the toy dataset
of Fig. 10. The decomposability gap comes from the fact that the
AP is not decomposable in mini-batches as we discuss in Sec. III-C.
The motivation behind LDG is thus to force the scores of the
different batches to be calibrated between mini-batches.

Fig. 10: Illustration of the decomposability gap on a toy dataset.

B. Upper bound on the decomposabilty gap

To formalize this idea, we provide a theoretical analysis of
the impact on the global ranking of LDG in Eq. (7) for standard
image retrieval. Firstly, we can see that if LDG=0 on every batch,
the overall M and Mb is maximal (1), i.e. DG(θ) = 0 and we
get a decomposable M. In a more general setting, we show that
minimizing LDG on each batch reduces the decomposability gap,
hence improving the decomposability of the M.

Let us consider K batches {Bb}b∈{1:K} of batch size B divided
in Ω+

b positive instances and Ω−
b negative instances w.r.t. the query

qi. To give some insight we assume that Mb=1. This results in
the upper bound of DG given in Eq. (26). This upper bound of the
decomposability gap is given in the worst case for the global M:
the global ranking is built from the juxtaposition of the batches (see
proof bellow).

We can tighten this upper bound by introducing the
decomposability loss LDG and constraining the scores of
positive and negative instances to be well calibrated. On each
batch we define the following quantities E−

b =
∑

j∈Ω−
b
1(sj >β)

which are the number of negative instances that do not respect the
constraints and G−

b =
∑

j∈Ω−
b
1(sj ≤ β) the number of negative

instances that do. We similarly define E+
b and G+

b . Giving the
upper bound of Eq. (27). LDG loss directly optimizes this upper
bound (by explicitly optimizing E−

b , E
+
b , E

+
b , G

+
b), making it

tighter, hence improving the decomposability of M.

Proof of Eq. (26): Upper bound on the DG with no LDG:
We choose a setting for the proof of the upper bound similar to the
one used for training, i.e. all the batch have the same size, and the
number of positive instances per batch (i.e. Pb

i) is the same.
Eq. (26) gives an upper bound in the worst case: when the AP

has the lowest value guaranteed by the AP on each batch. We
illustrate this case in Fig. 11.

Fig. 11: The worst case when computing the global AP would be
that each batch is juxtaposed.

In Eq. (26) the 1 in the right hand term comes from the average
of AP over all batches:

1

K

K∑
b=1

AP b
i (θ)=1

We then justify the term in the parenthesis of Eq. (26), which is the
lower bound of the AP. In the global ordering the positive instances
are ranked after all the positive instances from previous batches
giving the following rank+: j+|P1

i |+···+|Pb−1
i |, with j the rank+

in the batch, positive instances are also ranked after all negative
instances from previous batches giving rank−: |N 1

i |+···+|N b−1
i |.

Therefore we obtain the resulting upper bound of Eq. (26).
Proof of Eq. (27): Upper bound on the DG with LDG: We

refine the upper bound on DG in Eq. (27) by adding LDG which
calibrates the absolute scores across the mini-batches.

We now write that each positive instance that respects the
constraint of LDG is ranked after the positive instances of previous
batch that respect the constraint giving the following rank+:
j+G+

1 +···+G+
b−1, with j the rank+ in the current batch. Positive

instances are also ranked after the negative instances of previous
batches that do not respect the constraints yielding rank− :
E−

1 +···+E−
b−1.

We then write that positive instances that do not respect the
constraints are ranked after all positive instances from previous
batches and the positive instances respecting the constraints of the
current batch giving rank+ : j+G+

b |P1
i |+···+|Pb−1

i |. They also
are ranked after all the negative instances from previous batches
giving rank− : |N 1

i |+···+|N b−1
i |. Resulting in Eq. (27).

C. Choice of δ

In the main paper we introduce δ in Eq. (4) to define H−. We
choose δ as the point where the gradient of the sigmoid function
becomes low <ϵ, and we then have δ=τ ·ln1−ϵ

ϵ . This is illustrated
in Fig. 12. For our experiments we use ϵ=10−2 giving δ≃0.05.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

without LDG 0≤DG≤1−
1∑K

b=1|Ω
+
b |

 K∑
b=1

|Ω+
b
|∑

j=1

j+|Ω+
1 |+···+|Ω+

b−1|
j+|Ω+

1 |+···+|Ω+
b−1|+|Ω−

1 |+···+|Ω−
b−1|

 (26)

with LDG 0≤DG≤1−
1∑K

b=1|Ω
+
b |

(
K∑
b=1

[G+
b∑

j=1

j+G+
1 +···+G+

b−1

j+G+
1 +···+G+

b−1+E−
1 +...E−

b−1

+

E+
b∑

j=1

j+G+
b +|Ω+

1 |+···+|Ω+
b−1|

j+G+
b +|Ω+

1 |+···+|Ω+
b−1|+|Ω−

1 |+···+|Ω−
b−1|

])
(27)

sk sj

0.00

0.05

0.10

0.15

0.20

0.25

= ln 1

(sk sj)

Fig. 12: Gradient of the temperature scaled sigmoid (τ=0.01) v.s.
the difference of scores sk−sj of a negative pair.

APPENDIX B
ADDITIONAL DETAILS ON H-AP

A. Details on H-rank+

We define the H-rank+ in the main paper as:

H-rank+(k)=rel(k)+
∑
j∈Ω+

min(rel(k),rel(j))·H(sj−sk) .

(28)
We detail in Fig. 13 how the H-rank+ in Eq. (28) is computed

in the example from Fig. 3 of the main paper. Given a “Lada #2”
query, we set the relevances as follows: if k ∈Ω(3) (i.e. k is also
a “Lada #2”), rel(k) = 1; if k ∈ Ω(2) (i.e. k is another model of
“Lada”), rel(k)=2/3; and if k∈Ω(1) (k is a “Car”), rel(k)=1/3.
Relevance of negatives (other vehicles) is set to 0.

In this instance, H-rank+(2) = 4/3 because rel(2) = 1 and
min(rel(1), rel(2)) = rel(1) = 1/3. Here, the closest common
ancestor in the hierarchical tree shared by the query and instances
1 and 2 is “Cars”. For binary labels, we would have rank+(2)=1;
this would not take into account the semantic similarity between
the query and instance 1.

B. Details on H-AP
We define H-AP in the main paper as:

H-AP=
1∑

k∈Ω+rel(k)

∑
k∈Ω+

H-rank+(k)
rank(k)

(29)

We illustrate in Fig. 14 how the H-AP is computed for two
rankings. We use the same relevances as in Sec. B-A. The H-AP
of the first example is greater (0.78) than of the second one (0.67)
because the error is less severe. On the contrary, the AP only
considers binary labels and is the same for both rankings (0.45).

One property of AP is that it can be interpreted as the area
under the precision-recall curve. H-AP from Eq. (29) can also be
interpreted as the area under a hierarchical-precision-recall curve
by defining a Hierarchical Recall (H-R@k) and a Hierarchical
Precision (H-P@k) as:

H-R@k=

∑k
j=1rel(j)∑
j∈Ω+rel(j)

(30)

H-P@k=

∑k
j=1min(rel(j),rel(k))

k·rel(k) (31)

So that H-AP can be re-written as:

H-AP=
|Ω|∑
k=1

(H-R@k−H-R@k-1)×H-P@k (32)

Eq. (32) recovers Eq. (19) from the main paper, meaning that
H-AP generalizes this property of AP beyond binary labels. To
further motivate H-AP we will justify the normalization constant for
H-AP, and show that H-AP, H-R@k and H-P@k are consistent
generalization of AP, R@k, P@k.

1) Normalization constant for H-AP: When all instances are
perfectly ranked, all instances j that are ranked before instance
k (sj ≥ sk) have a relevance that is higher or equal than k’s, i.e.
rel(j)≥rel(k) and
min(rel(j),rel(k))=rel(k). So, for each instance k:

H-rank+(k)=rel(k)+
∑
j∈Ω+

min(rel(k),rel(j))·H(sj−sk)

=rel(k)+
∑
j∈Ω+

rel(k)·H(sj−sk)

=rel(k)·

1+
∑
j∈Ω+

H(sj−sk)

=rel(k)·rank(k)

The total sum
∑

k∈Ω+
H-rank+(k)

rank(k) =
∑

k∈Ω+ rel(k). This means
that we need to normalize by

∑
k∈Ω+rel(k) in order to constrain

H-AP between 0 and 1. This results in the definition of H-AP
from Eq. (29).

2) H-AP is a consistent generalization of AP: In a binary
setting, AP is defined as follows:

AP=
1

|Ω+|
∑
k∈Ω+

rank+(k)
rank(k)

(33)

H-AP is equivalent to AP in a binary setting (L=1). Indeed, the
relevance function is 1 for fine-grained instances and 0 otherwise
in the binary case. Therefore H-rank+(k)=1+

∑
j∈Ω+H(sj−sk)

which is the same definition as rank+ in AP. Furthermore the
normalization constant of H-AP,

∑
k∈Ω+ rel(k), is equal to the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 15

Query Image:
Lada #2

Fig. 13: H-rank+ for each retrieval results given a “Lada #2” query with relevances of Sec. B-A and the hierarchical tree of Fig. 3 in
the main paper.

Query Image:
Lada #2

Fig. 14: AP and H-AP for two different rankings when Given a “Lada #2” query and relevances of Sec. B-A. The H-AP of the top row
is greater (0.78) than the bottom one’s (0.67) as the error in rank=1 is less severe for the top row. Whereas the AP is the same for both
rankings (0.45).

number of fine-grained instances in the binary setting, i.e. |Ω+|.
This means that H-AP=AP in this case.

H-R@k is also a consistent generalization of R@k, indeed:

H-R@k=

∑k
j=1rel(j)∑
j∈Ω+rel(j)

=

∑k
j=11(k∈Ω+)∑
j∈Ω+1(k∈Ω+)

=
number of positive before k

|Ω+|
=R@k

Finally, H-P@k is also a consistent generalization of P@k:

H-P@k=

∑k
j=1min(rel(j),rel(k))

k·rel(k)
=

number of positive before k
k

=P@k

3) Link between H-AP and the weighted average of AP: Let
us define the AP for the semantic level l≥1 as the binary AP with
the set of positives being all instances that belong the same level,
i.e. Ω+,l=

⋃L
q=lΩ

(q):

AP(l)=
1

|Ω+,l|
∑

k∈Ω+,l

rank+,l(k)

rank(k)
,rank+,l(k)=1+

∑
j∈Ω+,l

H(sj−sk)

(34)
Property 1: For any relevance function
rel(k) =

∑l
p=1

wp

|Ω+,q| , k ∈ Ω(l), with positive weights
{wl}l∈J1;LK such that

∑L
l=1wl=1:

H-AP=
L∑
l=1

wl ·AP (l)

i.e. H-AP is equal the weighted average of the AP at all
semantic levels.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 16

Proof of Property 1

Denoting ΣwAP :=
∑L

l=1wl ·AP (l), we obtain from Eq. (34):

ΣwAP=
L∑
l=1

wl ·
1

|Ω+,l|
∑

k∈Ω+,l

rank+,l(k)

rank(k)
(35)

We define ŵl=
wl

|Ω+,l| to ease notations, so:

ΣwAP=
L∑
l=1

ŵl

∑
k∈Ω+,l

rank+,l(k)

rank(k)
(36)

We define 1(k,l) = 1
[
k∈Ω+,l

]
so that we can sum over Ω+

instead of Ω+,l and inverse the summations. Note that rank does
not depend on l, on contrary to rank+,l.

ΣwAP=
L∑
l=1

∑
k∈Ω+

ŵl ·1(k,l)·rank+,l(k)

rank(k)
(37)

=
∑
k∈Ω+

L∑
l=1

ŵl ·1(k,l)·rank+,l(k)

rank(k)
(38)

=
∑
k∈Ω+

∑L
l=11(k,l)·ŵl ·rank+,l(k)

rank(k)
(39)

We replace rank+,l in Eq. (39) with its definition from Eq. (34):

ΣwAP=
∑
k∈Ω+

∑L
l=11(k,l)·ŵl ·

(
1+

∑
j∈Ω+,lH(sj−sk)

)
rank(k)

(40)

=
∑
k∈Ω+

∑L
l=11(k,l)·ŵl+

∑L
l=1

∑
j∈Ω+,l1(k,l)·ŵl ·H(sj−sk)

rank(k)

(41)

=
∑
k∈Ω+

∑L
l=11(k,l)·ŵl+

∑L
l=1

∑
j∈Ω+1(j,l)·1(k,l)·ŵl ·H(sj−sk)

rank(k)

(42)

=
∑
k∈Ω+

∑L
l=11(k,l)·ŵl+

∑
j∈Ω+

∑L
l=11(j,l)·1(k,l)·ŵl ·H(sj−sk)

rank(k)

(43)

We define the following relevance function:

rel(k)=

L∑
l=1

1(k,l)·ŵl (44)

By construction of 1(·,l):
L∑
l=1

1(j,l)·1(k,l)·ŵl=min(rel(k),rel(j)) (45)

Using the definition of the relevance function from Eq. (44)
and Eq. (45), we can rewrite Eq. (43) with H-rank+:

ΣwAP=
∑
k∈Ω+

rel(k)+
∑

j∈Ω+min(rel(j),rel(k))·H(sj−sk)

rank(k)

(46)

=
∑
k∈Ω+

H-rank+(k)
rank(k)

(47)

Eq. (47) lacks the normalization constant
∑

k∈Ω+rel(k) in order
to have the same shape as H-AP in Eq. (29). So we must prove that∑

k∈Ω+rel(k)=1:∑
k∈Ω+

rel(k)=
∑
k∈Ω+

L∑
l=1

1(k,l)·ŵl (48)

=

L∑
l=1

|Ω(l)|
l∑

p=1

ŵp (49)

=

L∑
l=1

|Ω(l)|
l∑

p=1

wp

|Ω+,p| (50)

=

L∑
l=1

|Ω(l)|
l∑

p=1

wp

|⋃L
q=pΩ

(q)|
(51)

=

L∑
l=1

|Ω(l)|
l∑

p=1

wp∑L
q=p|Ω(q)|

(52)

=

L∑
l=1

l∑
p=1

|Ω(l)|·wp∑L
q=p|Ω(q)|

(53)

=

L∑
p=1

L∑
l=p

|Ω(l)|·wp∑L
q=p|Ω(q)|

(54)

=

L∑
p=1

wp·
∑L

l=p|Ω(l)|∑L
q=p|Ω(q)|

(55)

=

L∑
p=1

wp=1 (56)

We have proved that ΣwAP=H-AP with the relevance function
of Eq. (44):

ΣwAP=
1∑

k∈Ω+rel(k)

∑
k∈Ω+

H-rank+(k)
rank(k)

=H-AP (57)

Finally we show, for an instance k∈Ω(l), :

rel(k)=

L∑
p=1

1(k,p)·ŵp=

l∑
p=1

·ŵp=

l∑
p=1

wp

|Ω+,p| (58)

i.e. the relevance of Eq. (44) is the same as the relevance of
Property 1. This concludes the proof of Property 1. □

APPENDIX C
ADDITIONAL EXPERIMENTAL RESULTS

A. Additional hierarchical results

1) ASI.: The ASI [81] measures at each rank n ≤ N the set
intersection proportion (SI) between the ranked list a1,...,aN and
the ground truth ranking b1, ... ,bN , with N the total number of
positives. As it compares intersection the ASI can naturally take
into account the different levels of semantic:

SI(n)=
|{a1,...,an}∩{b1,...,bn}|

n

ASI=
1

N

N∑
n=1

SI(n)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 17

TABLE VIII: Performance comparison on Dynamic Metric Learning benchmarks [33].

Method DyML-Vehicle DyML-Animal DyML-Product

mAP ASI R@1 mAP ASI R@1 mAP ASI R@1

Fi
ne

TLSH [5] 26.1 38.6 84.0 37.5 46.3 66.3 36.32 46.1 59.6
NSM [11] 27.7 40.3 88.7 38.8 48.4 69.6 35.6 46.0 57.4
Smooth-AP [27] 27.1 39.5 83.8 37.7 45.4 63.6 36.1 45.5 55.0
ROADMAP [37] 27.1 39.6 84.5 34.4 42.6 62.8 34.6 44.6 62.5

H
ie

r.

ΣTLSH [5] 25.5 38.1 81.0 38.9 47.2 65.9 36.9 46.3 58.5
ΣNSM [11] 32.0 45.7 89.4 42.6 50.6 70.0 36.8 46.9 60.8
CSL [33] 30.0 43.6 87.1 40.8 46.3 60.9 31.1 40.7 52.7
CLCD-ACR [34] 16.0 42.9 - 36.0 57.1 - 29.4 58.8 -
CLCD-ICR [34] 16.6 43.7 - 35.7 56.0 - 30.2 59.5 -

HAPPIER 37.0 49.8 89.1 43.8 50.8 68.9 38.0 47.9 63.7

TABLE IX: Comparison of HAPPIER v.s. methods trained only on fine-grained labels on SOP and iNat-base. Metrics are reported for
both semantic levels.

SOP iNat-base

Fine Coarse Fine Coarse
Method R@1 AP AP R@1 AP AP

Fi
ne

TLSH [5] 79.8 59.6 14.5 66.3 33.3 51.5
NSM [11] 81.3 61.3 13.4 70.2 37.6 38.8
NCA++ [15] 81.4 61.7 13.6 67.3 37.0 44.5
Smooth-AP [27] 81.3 61.7 13.4 67.3 35.2 53.1
ROADMAP [37] 82.2 62.5 12.9 69.3 35.1 50.4

H
ie

r. CSL [33] 79.4 58.0 45.0 62.9 30.2 88.5

HAPPIER 81.0 60.4 58.4 70.7 36.7 88.6
HAPPIERF 81.8 62.2 36.0 71.6 37.8 85.1

TABLE X: Impact of optimization choices for H-AP (cf. Sec. III-B)
on iNat-base.

Ls
H-AP L∗

DG H-AP

✗ ✗ 52.3
✓ ✗ 53.1
✓ ✓ 54.3

TABLE XI: Comparison of H-AP (Eq. (20)) and ΣwAP
from Property 1.

test→
train↓ H-AP

∑
wAP NDCG

H-AP 53.1 39.8 97.0∑
wAP 52.0 40.5 96.4

2) Dynamic metric learning results.: On Tab. VIII, we evaluate
HAPPIER on the recent DyML benchmarks [33]. HAPPIER again
shows significant gains in mAP and ASI compared to methods only
trained on fine-grained labels, e.g. +9pt in mAP and +10pt in ASI on
DyML-V. HAPPIER also outperforms other hierarchical baselines:
+4.8pt mAP on DyML-V, +0.9 on DyML-A and +1.8 on DyML-P.
In R@1, HAPPIER performs on par with other methods on DyML-
V and outperforms other hierarchical baselines by a large margin
on DyML-P: 63.7 v.s. 60.8 for ΣNSM. Interestingly, HAPPIER
also consistently outperforms CSL [33] on its own datasets1.

3) Detailed evaluation: Tab. IX shows the different methods’
performances on all semantic hierarchy levels. We evaluate
HAPPIER and HAPPIERF with α = 5 on SOP and α = 3 on
iNat-base. Similarly to Tab. VI, Tab. IX shows that HAPPIER
gives the best performances at the coarse level, with a significant
boost compared to fine-grained methods, e.g. +43.9pt AP compared
to the best non-hierarchical TLSH [5] on SOP. HAPPIER even
outperforms the best fine-grained methods in R@1 on iNat-base,
but is slightly below on SOP. HAPPIERF performs on par with the
best methods at the finest level on SOP, while further improving

1CSL’s score on Tab. VIII are above those reported in [33]; personal discussions
with the authors [33] validate that our results are valid for CSL.

performances on iNat-base, and still significantly outperforms
fine-grained methods at the coarse level.

4) Relevance function choice: Tab. XI compares models that
are trained with the relevance function of Eq. (20), i.e. H-AP, and∑

wAP (relevance given in Property 1). We report results for H-AP,∑
wAP and NDCG. Both H-AP,

∑
wAP perform better when

trained with their own metric: +1.1pt H-AP for the model trained to
optimize it and +0.7pt

∑
wAP for the model trained to optimize it.

Both models show similar performances in NDCG (96.4 v.s. 97.0).
5) Choices of optimization: In Tab. X, we study the impact of

our different choices regarding the direct optimization of H-AP.
The baseline method uses a sigmoid to optimize H-AP as in [27],
[51]. Switching to our surrogate loss Ls

H-AP Sec. III-B yields a
+0.8pt increase in H-AP. Finally, the combination with LDG in
HAPPIER results in an additional 1.3pt improvement in H-AP.

B. Additional qualitative results

Controlled errors: SOP We showcase in Fig. 15 errors of
HAPPIER v.s. a fine-grained baseline. On Fig. 15a, we illustrate
how a model trained with HAPPIER makes mistakes that are
less severe than a baseline model trained only on the fine-grained
level. On Fig. 15b, we show an example where both models fail

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 18

Query image

H
AP

PI
ER

rank 1

Ba
se

lin
e

rank 2 rank 3 rank 4 rank 5 rank 6

(a) HAPPIER can help make less severe mistakes. The inversion on the bottom row are with negative instances (in red), where as with HAPPIER (top
row) inversions are with instances sharing the same coarse label “bike” (in orange).

Query image

H
AP

PI
ER

rank 1

Ba
se

lin
e

rank 2 rank 3 rank 4 rank 5 rank 6

(b) In this example, the models fail to retrieve the correct fine grained images. However HAPPIER still retrieves images of very similar bikes (in orange)
whereas the baseline retrieves images that are dissimilar semantically to the query (in red).

Fig. 15: Qualitative examples of failure cases from a standard fine-grained model corrected by training with HAPPIER.

to retrieve the correct fine-grained instances, however the model
trained with HAPPIER retrieves images of bikes that are visually
more similar to the query.

	Introduction
	Related work
	Image Retrieval proxy losses
	Rank loss approximations
	Decomposability in AP optimization
	Hierarchical predictions and metrics
	Hierarchical datasets

	Smooth and decomposable rank losses
	Preliminaries
	SupRank: smooth approximation of the rank
	Decomposable rank losses

	Instantiation to standard image retrieval
	Application to Average Precision
	Application to the Recall at k

	Instantiation to Hierarchical Image Retrieval
	Hierarchical Average Precision
	Relevance function design
	Hierarchical Average Precision Training for Pertinent Image Retrieval

	Application to the NDCG

	Hierarchical Landmark dataset
	Scraping Wikimedia Commons
	Post-processing supercategories
	Discussion and limitations

	Experiments
	Standard image retrieval.
	Comparison to AP approximations
	Ablation study.
	Analysis on decomposability
	ROADMAP hyper-parameters

	Comparison to state-of-the-art
	Hierarchical Results
	Detailed evaluation
	Model analysis
	Hierarchical landmark results
	Qualitative experiments

	Conclusion
	References
	Biographies
	Elias Ramzi
	Nicolas Audebert
	Clément Rambour
	André Araujo
	Xavier Bitot
	Nicolas Thome

	Appendix A: Additional details on method
	Decomposability gap: Average Precision
	Upper bound on the decomposabilty gap
	Choice of

	Appendix B: Additional details on H-AP
	Details on H-rank+
	Details on H-AP
	Normalization constant for H-AP
	H-AP is a consistent generalization of AP
	Link between H-AP and the weighted average of AP

	Appendix C: Additional experimental results
	Additional hierarchical results
	ASI.
	Dynamic metric learning results.
	Detailed evaluation
	Relevance function choice
	Choices of optimization

	Additional qualitative results

