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Abstract—This paper presents an extension of the HMAX
model: a neural network model for image classification. The
HMAX model can be described as a four-level architecture
with a first level consisting of multi-scale and multi-orientation
local filters. We introduce two main contributions to this model.
First, we improve the way the local filters at the first level are
integrated into more complex filters at the last level, providing
a flexible description of object regions, combining local infor-
mation of multiple scales and orientations. These new filters
are discriminative and yet invariant, two key aspects of visual
classification. We evaluate their discriminative power and their
level of invariance to geometrical transformations on a synthetic
image set. Second, we introduce a multi-resolution spatial pooling.
This pooling encodes both local and global spatial information
to produce discriminative image signatures. Classification results
are reported on three image data sets, Caltech101, Caltech256
and Fifteen Scenes. We show significant improvements over
previous architectures using a similar framework.

I. INTRODUCTION

The task of visual classification is a cornerstone of image

processing and computer vision. This remains one of the most

challenging problems of the field since it implies identifying

complex categories inside images, such as scenes or objects. A

good classification system should respond invariably to objects

within the same class and differently between classes. One

key aspect of such a system is the ability to define and learn

representations with a proper balance between discriminability

and invariance.

In the field of computer vision, some developments have

pointed towards this goal. One is the design of discriminative

low-level local features, such as SIFT [1] and HoG [2].

These local descriptors provide a discriminative signature of

image patches, and are invariant to various image degradations

such as geometric and photometric transformations. Another

development in computer vision is the emergence of mid-

level representations based on the Bag of Words (BoW)

model [3]. The BoW model, inspired from the text retrieval

community, leads to state-of-the art performances in most

standard databases. To achieve human performance level, the

ultimate solution to image classification remains unclear and

alternative avenues, such as biological vision, can be explored

in order to define image representations.

When considering models of visual recognition it is difficult

to ignore the level of performance achieved by biological

vision. The mammalian visual system displays recognition

abilities that cannot be matched by any artificial system and it

seems wise to consider insights about the functioning of the

visual cortex.

Models of the mammalian visual system mainly originate

with the Nobel prize work of Hubel & Wiesel [4]. A key point

of their discovery is that neurons in the visual cortex describe a

manifold of localized filters organized into columns of spatial

frequencies and orientations. Their work gave biological sup-

port to early psychophysical theories stating that the visual

system analyzes patterns into multiple and independent fre-

quency channels [5], [6]. More recent studies [7], [8] provide

mathematical models to the work of [4]. In [8] it is shown

that the point spread function of neurons in the mammalian

visual cortex can be modeled by Gaussian derivative filters (i.e

band-pass filter) of multiple orientations and scales. In [7] it is

shown how such filters emerge by learning statistics of natural

images. All these considerations regarding the local receptive

fields of visual neurons are also given a strong theoretical

setting in the scale-space theory of vision [9], [10], [11], [12],

[13]. The scale-space theory describes the visual front end of

the cortex with a family of local and scaled gaussian operators.

This formulation of the visual cortex can be implemented in

multi-layer neural networks composed of simple units with

local receptive field profiles [14].

According to the biological model, the low level operations

of these multi-layer networks are defined by local oriented

filters at multiple scales (i.e. Gaussian derivatives or Gabor

filters). These networks combine the low level representations

into object level representations suitable for recognition tasks

[15], [16], [14], [17], [18], [19]. Different types of feature

combinations in the hierarchy can be considered and produce

different performances [20], [21]. Physiological studies sug-

gest that feedforward activation, with little or no feedback,

produces the early recognition response while sustained feed-

back mechanisms generate a more attentive response [22],

[14]. When modeling a purely feedforward activation, the

challenge is to produce high level representations which are

both discriminative and invariant. Indeed, by building complex

and global representations from simple and localized features

these networks face the problem of finding a balance between

object specific representations and invariant representations to

ensure differentiation between classes of object and invariance

inside each class.

In this paper, we introduce an architecture for image clas-

sification which extends on previous work based on basic

operations of the visual cortex [19], [1]. In particular, our

network pools over oriented and scaled filters at the lowest

level, which correspond to early operations of simple cells

and complex cells in the V1 cortical area [14]. The work of

[23] also presents an extension of [19] by integrating sparsity,

a refined pooling strategy and a feedback mechanism to
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select relevant representations. We keep this basic framework

of simple cells and complex cells operations, and improve

previous networks [19], [1], [24] by refining the filters on the

last level of the network which integrate simple local filters

into more complex filters covering larger and more complex

image regions.

Specifically, we introduce two main contributions that im-

prove the classification capacity of previous similar networks.

First, the coefficients of each filter on the last layer are

trained to better discriminate the image content. Importantly,

this gain in terms of discriminability is also coupled with

an increase in terms of invariance. This joint discriminability

and invariance improvement is achieved due to the ability

to extract relevant image structures while being tolerant to

various degradations such as geometric transformations or

occlusions.

Second, we present a flexible multi-resolution radial ap-

proach to pool the outputs of filters across the image. Neurons

in the inferior temporal visual cortex (IT) are known to have

limited receptive fields of various sizes [14]. These can be

interpreted as pooling over local regions of various sizes on

the visual field, which results in partial invariance to spatial po-

sition. In this spirit, our multi-resolution pooling corresponds

to matching a given filter inside spatial neighborhoods with

different pooling radii, yielding different levels of invariance.

The optimal level of invariance, for a classification task, can

then be learned by a classifier in a supervised manner at the

highest level of the network.

The remainder of this paper is organized as follows. Section

II presents state-of-the-art methods that are the most connected

to ours. The general HMAX network architecture is depicted

in section III. Section IV gives the details of our contributions,

while sections V and VI give supporting experimental results.

Finally, section VII concludes the paper and gives directions

for future works.

II. RELATED WORK

In this section, we review the approaches which are the most

relevant to our approach.

A. Bag of Words (BoW) Methods

BoW models have extensively been studied in the last

decade due to their good performances for classifications in

many object or scene databases. In the BoW model [3], a set

of local and accurate descriptors (e.g. SIFT) is first computed,

forming the so-called ”Bag of Features” (BoF) for a given

image. The BoF is then transformed to a constant-size image

representation to generate the Bag of Words (BoW). The BoW

can be interpreted as an occurrence histogram of visual words,

where the visual codebook (dictionary) has been trained from

a set of local descriptors. The mapping of visual codebooks

against image descriptors can be decomposed into a coding

phase followed by a pooling step, as formalized in [25]. In

the original BoW model [3], a simple vector quantization

stage is applied for coding, and the codes are aggregated with

an average pooling strategy. Several improvement have been

proposed to improve coding and pooling steps. To reduce

the quantization errors induced by vector quantization, one

may rely on soft assignment [26], or sparse coding tech-

niques [27], [25], that explicitly minimize reconstruction error.

The Restricted Boltzman Machine (RBM) model has been

used to produce fast sparse coding inferences [28]. Regarding

pooling, max pooling has recently been studied and proved to

be a good alternative to sum pooling, especially when linear

classifiers are used. An extension of the BoW formalism uses

a pooling which encodes the distance-to-codeword distribution

[29]. Another extension of BoW models using Fisher ker-

nels which benefits from both generative and discriminative

approaches has also shown good classification results [30].

Finally, since the BoW model ignore spatial information,

most of the approaches integrate the Spatial Pyramid Scheme

(SPM) [31], also extended in the context of photographic style

image classification [32]. Other approaches, based on the BoW

model, also encode the relative spatial distributions between

visual words [33], [34]. Learning algorithms have also been

used to learn efficient feature combinations [35].

B. Deep & biologically inspired architectures

Multi-layer networks or the convolutional networks intro-

duced by LeCun et al. [17], [36] are certainly amongst the

pioneer works of this type of architecture. The main idea is

to learn each layer representations from data. In the original

convolutional networks, parameters of the whole network are

trained in a supervised manner using the error backpropagation

algorithm. Ranzato et al. [17] focus on unsupervised learning

of features at every layer of a standard convolutional neural

network, while Lee et al. [37] propose to use a Convolutional

Restricted Boltzman Machine (CRBM) for image catego-

rization, and report promising performances. A key aspects

of these type of models consists in learning a hierarchical

composition of filters [38], [17]. The depth of these models,

although appealing, implies a very large number of coefficients

to be learned and often require to solve complex and highly

non convex optimization problems.

Other biologically inspired models focus on building net-

works of simple and complex features based on physiological

data about the mammalian visual pathways [4], [15], [39],

[14], [40], [16]. Beginning with low level filters, matching

the physiological recordings in the early steps of the visual

pathway, the challenge is to organize such low level repre-

sentations into a coherent robust object level representation.

The low level representations are often fixed but supported by

physiological studies, while higher level representations can be

learned and driven by a specific task. The pioneer work of [15],

[41], [36] has shown how a deep architecture can be trained to

merge simple visual features into a more complex whole while

retaining some degree of invariance to basic visual transforms.

In [40] effort is put in statistical learning of the relative

position of simple features and carrying this information into

a global discriminative representation. The work in [16] uses

temporal correlations, between views of a transforming object,

to learn a multi-layer architecture with invariant properties to

various visual transformations. In [39] the emphases is put

on the unsupervised learning of relevant object level features

using the temporal aspect of neural encoding.
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Fig. 1. General convolution network: the network alternates layers of feature mapping (convolution) and layers of feature pooling. The convolution layers
generate specific feature information whereas the pooling layers generate invariance by relaxing the configuration of these features.

Another important contribution to biologically inspired

models comes from the HMAX model [18], which focuses

less on learning and more on designing simple operations

inspired by the visual cortex. This networks alternates lay-

ers of features extraction with layers of maximum pooling,

mimicking known data about the ventral pathway of visual

cortex. Serre et al. [19] extend the original HMAX model to

add multi-scale representations as well as more complex visual

features. Huang et al. [23] also improved the HMAX model

with sparsity constraints, a different pooling strategy and a

feedback mechanism to improve feature learning. The model

proposed by Mutch et al. [1] is the most closely related to

ours: they improve the network of [19] by tuning the filters

to the dominant local orientations. In our previous work [24],

we further improved this idea to local scales. In [42] it is

also shown how HMAX filters can outperform state-of-the-art

filters such as SIFT under various controled invariance tasks

on synthetic images.

We extend on the properties of this particular family of

models. We use two levels of filters in which the second level

filters are trained to optimally fit the dominant local geometry

of images. Our contributions can be summarized as follows:

• Training of filters which generate representations that are

more discriminative and more invariant

• Design of a novel multi-resolution pooling that codes the

spatial distribution of each category.

• Experimental validations of the discriminative power and

invariance level of the network with respect to previous

models

Additionally, we highlight the complementarity between

our representations and the local descriptors used in BoW

models. We combine both strategies to reach or outperform

state-of-the art results. The local descriptors used in the BoW

models are usually fine-grained description of an image, which

correspond to small image areas, e.g. 16 × 16 pixel patches.

The descriptors presented in this paper operate on a different

scale and correspond to features with larger spatial extent, and

constitute therefore complementary representations from those

extracted with BoW models.

III. GENERAL HMAX MODEL

The general HMAX model follows a basic alternating

convolution/pooling scheme as in [19], [18] and illustrated in

figure 1. Each convolution step yields a set of feature maps

and each pooling step provides robustness to variations in these

feature maps. Below we describe the operations of each layer

as done in [19].

Layer 1. Each feature map L1
σ,θ

can be obtained by

convolution of the input image with a set of Gabor filters

g
σ,θ

with orientations θ and scales σ. These filters are used

to model simple cell activation in the V1 area of the visual

cortex [14]

g
σ,θ
(x, y) = exp(

x2
o + γy2o

2σ2 ) · cos(
2π

λ
xo), (1)

where xo = x cos θ+ y sin θ and yo = −x sin θ+ y cos θ. The

parameter γ indicates the aspect ratio of the filter and λ its

wavelength.

Given an image I , Layer 1 at orientation θ and scale σ is

given by the absolute value of the convolution product

L1
σ,θ

= |g
σ,θ

∗ I|. (2)

Layer 2. Each feature map L2
σ,θ

is a dimension reduction of

L1
σ,θ

obtained by selecting maxima on local neighborhoods.

A well known effect of maximum pooling over local neigh-

borhood is the invariance to local translations and thereby to

global deformations [18], [15].

Specifically, the second layer partitions each L1
σ,θ

map

into small neighborhoods ui,j and selects the maximum value

inside each ui,j such that

L2
σ,θ
(i, j) = max

ui,j∈L1
σ,θ

ui,j . (3)

Some degree of scale invariance is also achieved by

keeping only the maximum output over two adjacent scales

at each position (i, j).

Layer 3 Layer L3 at scale σ is obtained by convolving

filters α
m, which we call HL filters, against layer L2σ

L3
m
σ = α

m ∗ L2σ. (4)
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HL filters represent visual descriptors of ”mid-level” areas

in the image which combine ”low-level” Gabor filters of

multiple orientations at a given scale. To compute equation

4, HL filters must first be trained as described below.

Training In the basic HMAX framework [19], as shown in

figure 2, the HL filters αm are the result of a sampling process

over the layer L2 of training images. This sampling process

has three parameters: scale, spatial position, and spatial size.

Specifically, HL filters are generated by randomly sampling

prototype blocks of L2 coefficients of spatial size n × n at

position (x, y) and scale σ, covering all orientations θ. In [19],

M ∼ 1000 prototypes blocks are sampled over the training

set to create M HL filters. For illustration, in figure 2, the

shaded blue represents the entire L2 layer with all scales

and orientations concatenated together along the z axis. The

shaded red, L2σ , illustrates one slice of the layer at scale σ

and containing all the orientations.

Layer activation As shown by the right part of figure 2,

each sampled block defines one HL filter which can be later

matched against the L2 layer of new images. In [19] each HL

filter is matched against layer L2 at all spatial positions and

all scales. Specifically, as given by equation 4, each HL filter

is convolved over each scale map L2σ to produce the feature

maps L3
m
σ .

Training:

 M~1000 blocks of

coefficients        are 

sampled on layer L2 of 

training images. 

x

y

:Orientation depth

:Scale depth

z

HL filter 

Layer activation:

convolution of each 

HL filter over different 

scale maps        of 

new images.

sampling

n

n(x,y)

Fig. 2. HMAX: level-3 operations. Training: M ∼ 1000 HL filters are
defined by sampling prototype blocks of L2 coefficients from training images.
Layer activation: Given a new image, each HL filters is convolved over all
positions of each scale map L2σ .

Layer 4 To gain global invariance, the final signature is

computed by selecting the maximum output of L3m
σ across all

position and scales. The final layer is thus a vector of dimen-

sion M ∼ 1000 where each coefficient gives the maximum

output of each HL filter across scales σ and positions (x, y).

L4 =











max
(x,y),σ

L3
1
σ(x, y)

...

max
(x,y),σ

L3
M
σ (x, y)











. (5)

IV. ADVANCED CODING AND SPATIAL POOLING STRATEGY

Here we describe our contribution to the HMAX model and

give parameter details for each layer.

x

Our model[19] [1]

y

x

y

:Orientation depth

: Scale depth

z

:    HL filter

Fig. 3. Our model: level-3 operations. In our model each HL filter spans
over multiple scales simultaneously. In this example, the filter is convolved
simultaneously over multiple scales centered at scale σ At training the
coefficients corresponding to weak scales and orientations are set to zero
making our filter more discriminative, ignoring weaker scale and orientations
during testing.

Layer 1. As done in [19], we use equation 2 to define

each L1
σ,θ

map. The scale range of σ varies with grid size

according to table I. We use a range of 12 orientations Θ =
{kπ
12 }, k ∈ {0 . . . 11} and 8 scales S = [σ1, .., σ8] . The aspect

ratio was set to γ = 0.3 to match the settings in [19]. To

ensure scale invariance, each filter is normalized to zero mean

and unit length. To obtain invariance to light intensity, each

pixel patch during the convolution product in equation 2 is

normalized to unit length before being multiplied by the filter.

Scale Filter size σ λ

1 7×7 2.8 3.5
2 11×11 4.5 5.6
3 15×15 6.7 7.9
4 19×19 8.2 10.3
5 23×23 10.2 12.7
6 27×27 12.3 15.5
7 31×31 14.6 18.2
8 35×35 17.0 21.2

TABLE I
LAYER 1 FILTERS PARAMETERS. AS DONE IN [19] THE SCALE AND

WAVELENGTH OF EACH FILTER IS CHOSEN TO MATCH PHYSIOLOGICAL

RECORDINGS.

Layer 2. Each feature map L2
σ,θ

is obtained as described for

the HMAX model in section III. Similarly to [1], we applied

a competition to both the orientation and scale coefficients

setting to zero the weaker coefficients at each position (i, j).
We used pooling neighborhoods ui,j of sizes proportional to

the scale of processing as in [19] and given by table II.

Layer 3 Our first principal contribution is in way the HL

filters are trained and used to generate layer L3.
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Scale Neighborhood u sizes

1 8×8
2 10×10
3 12×12
4 14×14
5 16×16
6 18×18
7 22×22
8 24×24

TABLE II
LAYER 2 MAXIMUM POOLING NEIGHBORHOOD SIZE. THE POOLING SIZE

IS PROPORTIONAL TO THE FILTERING SCALE OF THE PRECEDING LAYER.

Training Our methods contrasts with earlier models [18],

[19], [1] since our HL filters are not limited to a single scale.

This difference with the original HMAX model is illustrated

when comparing figure 2 with figure 3. There are two main

differences to be noted between the two figures:

1) Modeling : our HL filters cover a range σ ±∆σ of scales

simultaneously. This gives more representation power to each

HL filter. By increasing its scale range, each HL filter can

represent ”mid-level” structures containing multiple scales

inside the same spatial neighborhood. This is an improvement

over the representation in [19], [1], where the HL filters span

a single scale, limiting the possibility of each filter to match

the local scale of image structures.

2) Robustness : our HL filters are trained to optimally match

the dominant local scales and orientations, discarding weaker

training scales and orientations. By setting its coefficients on

Gabor filters which produce strong training outputs, each HL

filter gains robustness to interfering orientations and scales

(i.e noise and clutter) when presented with a new image.

This principle has been introduced in [1] for the case of

orientations. As shown at the bottom left of figure 3, the

HL filters in [1] are a refined version of [19], where the HL

filter coefficients corresponding to weak orientations are set to

zero (white cubes set to zero). This increased discriminative

power reduces interference caused by weak orientations during

testing. We extend the principle of [1] by also specializing each

filter on the dominant local scale, setting to zero coefficients

corresponding to weaker scales. This makes our HL filters even

more discriminative by ignoring weaker scales and orientation

on test images.

Algorithm 1 summarizes the steps for training the HL filters.

As for the HMAX our HL filters are trained by sampling proto-

type blocks from the L2 layer of training images. Specifically,

we sample prototype blocks Bm ∈ R
n×n×|S|×|Θ| from layer

L2. The dimension n ∈ {4, 8, 12, 16} define the spatial size of

the HL filter, |S| ∈ {1, 3, 5, 7} its scale range, and |Θ| = 12
its orientation range. Using the sampled prototype block Bm,

the coefficients αm
i,j,σ,θ

are set such that

αm

i,j,σ∗ ,θ∗
=







Bm

σ∗ ,θ∗
(i, j) if (σ∗, θ∗) = argmaxBm

σ,θ
(i, j)

0 otherwise
.

(6)

Equation 6 can be thought of as a learning rule which

sets to zero the connections on weak orientations and scales

(white cubes in figure 3) after being presented with a single

prototype example Bm. For each HL filter, the coordinate

sm = (xm, ym, σm
s ) at which prototype Bm is sampled

is memorized. This memorized coordinate is used at layer

L4 to encode spatial information about each HL filter when

presented with new images.

Algorithm 1 HL filter training

Require: M: number of filters to train

|Θ| = 12: number of orientations

|S| ∈ 1, 3, 5, 7: number of scales

n ∈ 4, 8, 12, 16: spatial size

for m = 1 to M do

Select one training image

Activate up to layer L2

Select a random coordinate sm = (xm, ym, σm
s ) on L2

Extract a random sample Bm ∈ R
n×n×|S|×|Θ| at position

sm
Apply equation 6 to get αm

end for

return sm , αm

Layer activation Each feature map L3
m
σ is a convolution

product of the L2 layer with filter α
m centered at scale σ.

Specifically, the output L3m
σ (x, y) is given by the dot product

of α
m with the block L2σ(x, y) at spatial position (x, y),

centered on scale σ.

L3
m
σ (x, y) = 〈αm,L2σ(x, y)〉. (7)

For our most basic network we use M = 4080 filters to

generate M maps L3
m
σ . We normalize to unit length each

components of equation 7 so that it gives the cosine between

both components. In [19], [1] a radial basis function (RBF)

is used for layer L3. After experimental verification showing

better performances we chose a normalized dot product as

opposed to a RBF. We observe near 3% improvement in

classification score using the normalized dot product defined

in equation 7 when compared to the RBF function used in

[1], [19]. One possible advantage of using normalization here

is to ensure that geometrical similarities of features are kept

invariably with respect to light intensity variations.

The toy example (synthetic image) in figure 4 shows how

our HL filters adapts differently to local image structures

when compared with [1], [19]. In the figure, the red ellipses

correspond to the local scales and orientations of Gabor filters

selected by the HL filter αm. In [1] the randomly chosen scale

of the filter is misadapted to the local image scale. This results

in sub-optimal Gabor filters selected along the edges and not

corresponding to the optimal local scale of the training image.

In [19] the randomly chosen scale is again misadapted to the

local image scale and all orientations are trained. As shown,

our HL filter adapts to the optimal local scale and orientation

of the training image.

Layer 4. Our second main contributions is in the way the

outputs of HL filters αm are spatially pooled together to create
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Training image

[19] [1] [Our HL filter]

Fig. 4. Toy examples. The red ellipses indicates the local scale and
orientation of Gabor filters selected by the HL filter. On the left, the HL
filter is trained at a randomly chosen scale on all orientations as done in [19].
In the middle the HL filter is trained on a randomly chosen scale and learns
the optimal orientation as done is [1]. On the left, our HL filter adapts to the
optimal scale and orientation.

a full image signature at layer L4. As done in [19] (figure 5)

one can store the maximum global output of each HL filter into

one vector signature. In [1], spatial information is represented

by memorizing the training position of each HL filter and

then taking the maximum output for each test image in the

neighborhood of the training position. In [31] a pyramidal

pooling approach (SPM) is used to code spatial information.

Serre [19] Lazebnik [31] Mutch [1] Our Model

Fig. 5. Image partitions for pooling. In [19] the entire image is used to
pool each HL filter. In [31] a pyramidal (SPM) partition of the image is used
to code spatial information. In [1] a localized pooling regions is defined for
each HL filter. Our pooling is localized with multiple spatial resolutions.

Here, we introduce a spatial pooling which merges aspects

of the pyramidal pooling in [31] and the localized pooling in

[1]. Using these principles, our HL filters perform a maximum

pooling over image regions of various sizes. Specifically, for

each HL filter α
m a set of concentric search regions Si is

established around the coordinate sm = (xm, ym, σm
s ) which

was memorized at training. To retain some scale information,

the search region is also established at ±1 scale around σm
s .

Search Radius % of image size

R1 5
R2 10
R3 30
R4 50
R5 70
R6 100

TABLE III
LAYER 4 POOLING RADII. THE POOLING RADII ARE EMPIRICALLY

CHOSEN TO COVER THE WHOLE IMAGE WITH A SUFFICIENTLY FINE

SPATIAL RESOLUTION.

Each search region Si is defined by a radius Ri as shown

in table III and centered on the memorized coordinate sm .

We chose 6 levels of spatial pooling resolution. The lowest

level (R1 = 5%) corresponds to the level of resolution used

in [1]. The highest level (R6 = 100%) ensures that the entire

image is covered, not discarding any feature. The remaining 4

resolutions are chosen to ensures a sufficiently fine resolution

to encode variations in spatial positions.

R1

R3

: Search regions  

New image

max

R6

(xm,ym)

Fig. 6. Multi-resolution pooling. The training coordinate sm =
(xm, ym, σm

s
) of each HL filter is memorized. For each new image, a

concentric series of 6 search spatial regions are centered on this coordinate
and spanning σm

s
±1 scales . The maximum value is pooled from each search

region. This generates both rich and localized spatial information.

By defining a local pooling region centered on the training

position of each HL filter we take advantage of spatial reg-

ularities inside a given image class as done in [1]. By also

varying the pooling radius (figure 6) we allow a more precise

encoding of spatial relations. But unlike [31], our pooling is

centered on each HL filter and is therefore feature specific.

For example as shown in figure 7, two categories might

share a similar feature (i.e peak) but consistently positioned

around the same position inside each category and at different

positions between categories. It is therefore essential for

classification to encode the spatial position of these features

while capturing some variations, which is accomplished by

using multiple radii off pooling.

Fig. 7. Multi-resolution pooling. Both categories contain a similar feature (i.e
peak). The feature is located in a limited but different region in both categories,
with some variations inside each category. Both the category specific position
and the variations within it are coded by our multi-resolution pooling.

This maximum pooling procedure is applied for each HL

filter and the results are concatenated into a final L4 vector

signature (equation 8). Each element of the L4 vector repre-
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sents the maximum activation level of each HL filter inside

each search region.

L4 =





































max
R1, σ1

s±1
L3

1
σ1
s

...

max
R1, σM

s ±1
L3

M
σM
s

...

max
R6, σ1

s±1
L3

1
σ1
s

...

max
R6, σM

s ±1
L3

M
σM
s
























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Classifier. The layer 4 signature vector of each image are

used to train one-against-all classifier, using a gaussian kernel

with L2 norm [43].

V. CLASSIFICATION EXPERIMENTS

We give classification results for three images sets and we

breakdown the improvements according to our contributions.

A. Data sets

To evaluate our network on classification tasks, we use

three natural image data sets (figure 9). The first two, Cal-

tech101 and Caltech256, are composed of various objects

classes whereas the second one, Fifteen Scenes, corresponds

to indoor/outdoor scenes.

1) Caltech101 and Caltech256: The Caltech101 [44] image

set is composed of 102 categories for a total of 9144 natural

images. The Caltech256 [45] image set is composed of 257

categories or a total of 30607 natural images. For both, each

category represents a particular object against either a plain

background or a natural scene.

2) Fifteen scenes: The Fifteen Scenes data set [44] is

composed of 15 categories of urban and rural scenes for a

total of 4885 images.

B. Classification results

1) Caltech101: Our basic architecture trains 40 HL filters

per category for a total of M = 4080 HL filters. We used

the standard classification procedure with 15 and 30 training

examples per class, as done in all models presented in table IV.

A mean comparison Student t-test, with a risk α = 0.05, shows

that our score of 69.52% is significantly above all biologically

inspired architectures reported in [19], [1], [23], [24], [17],

[37], [46], [38], [40] and compares with the highest scores in

[47]. All these architectures use a similar generic framework of

alternating convolution/pooling. Our highest score of 76.32%
reaches state-of-the-art level for 30 training examples when

compared to benchmark models using BoW methods with

mono feature descriptors. Our architecture generates a total

increase of 15% over the results in [1], the model most closely

related to ours.

We reimplemented the two models presented in [19], [1],

which are the most closely related to ours, and were able

15 images 30 images

Our model

|S| = 1 53 59
+ normalized dot product 56.17 ± 0.48 63.00 ± 0.9

|S| = 1 ∪ 7 59.21 ± 0.18 66.84 ± 1.05
+ multi-resolution pooling 60.1 ± 0.5 69.52 ± 0.39

+ pixel level gradient 68.49 ± 0.75 76.32 ± 0.97

Deep biologically inspired architectures

Serre et al. [19] 35 42
Mutch&Lowe [1] 48 54
Huang et al. [23] 49.8 ±1.25

Theriault et al. [24] 54 ±0.5 61 ±0.5
Lecun et al. [17] - 54±1.0

Lee et al. [37] 57.7±1.5 65.4±0.5
Jarret et al. [46] - 65.6±1.0
Zeiler et al. [38] 58.6±0.7 66.9±1.1
Fidler et al. [40] 60.5 66.5
Zeiler et al. [47] 71.0 ±1.0

BoW architectures

Lazebnik et al. [31] 56.4 64.6±0.7
Zhang et al. [48] 59.1±0.6 62.2±0.5
Wang et al. [27] 64.43 73.44
Yang et al. [49] 67.0±0.5 73.2±0.5

Boureau et al. [25] - 75.7±1.1
Sohn et al. [50] - 77.8

TABLE IV
CLASSIFICATION RESULTS IN AVERAGE PRECISION ON CALTECH101

Fig. 8. Our best five classification accuracies on Caltech101

to reproduce or go above their published scores of 42% and

54% respectively. We used these reimplementations as our first

baselines. Note that our basic score of 59% is already above

the score reported in [1]. This is explained by the fact that we

use a L2 norm gaussian kernel instead of a linear classifier

and also by our choice of implementing a multi-resolution of

Gabor filters as opposed to an image pyramid with a fixed filter

size. Beginning with our most basic setup, table IV shows the

increase in classification scores observed when adding step by

step the various aspects of our contributions.

First, when adding a normalized dot product on layer L3

(equation 7) instead of the RBF function used in [1] we

observe an increase near 3% in classification scores.

Second, we observe a jump of near 4% when using HL

filters with multiple scales |S| ∈ {1, 3, 5, 7}. There is indeed

a trade-off between the precision at which the HL filter fits

the training data (discriminative power) and the level of scale

invariance it can achieve. To account for both discriminative
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Fig. 9. Top: samples from the Caltech101 and Caltech256 image sets. Bottom: samples from the Fifteen Scenes image set

power and invariance we can train HL filters on all values of

|S|.
Third, when adding our multi-resolution pooling at the final

level of the network, an additional 2% increase is observed.

For certain objects the spatial position relative to other features

in the image can be very informative. To encode spatial

training positions as well as spatial relations between features

our final L4 image signature concatenates all pooling radii

{R1, ...,R6} defined in table III.

The independent effects of our two main contributions, the

multi-resolution pooling and the deeper HL filters are shown

in table V. When combining HL filters signatures using all 7

scales with signatures using a single scale, a 4% increase is

observed. A paired sample Student t-test on 10 independent

splits shows this increase to be significant with a risk α =
0.05. When adding the multi-resolution pooling alone a near

2% increase is observed, also significant with a risk α = 0.05.

Our model

|S| = 7 62.82 ± 0.90
|S| = 1 ∪ 7 66.84 ± 1.05

|S| = 7
+ multi-resolution pooling 64.58 ± 1.05

TABLE V
IMPROVEMENT OBTAINED INDEPENDENTLY FOR OUR TWO MAIN

CONTRIBUTIONS TESTED ON CALTECH101 FOR 30 TRAINING EXAMPLES.
DIFFERENCES ARE SIGNIFICANT ON A paired sample Student t-test WITH A

RISK α = 0.05.

By being composed of large arrays of Gabor filters, our

HL filters give spatial information spanning large image areas

(object level) as shown in figure 10. Although Gabor filters are

defined as local frequency operators they respond similarly to

an oriented second order derivative and they share relations

with the family of gaussian derivative operators [10], [11],

[12]. Therefore it is fair to say that our HL filters fall into the

general category of descriptors composed of local band-pass

filters, measuring or approximating various orders of spatial

derivatives.

One such descriptor used for image classification is the SIFT

descriptor [25], [49] which relies on local gradients. Contrarily

to a SIFT descriptor, one single HL filter pools multiple spatial

scales inside the same patch simultaneously (red ellipses in

figure 10). For this reason one single HL filter can describe

an object using multiple scales across one large image region

(i.e 90x90 pixels). Different SIFT descriptors can operate at

different scales but the scale of each individual descriptor is

the same across the patch which usually covers smaller image

regions (16x16 up to 48x48 pixels). These are two different

levels of representation. Combining these descriptors allows

for fine gradient descriptions as well as more macro, object

level, descriptions. When combining the pixel level encoding

of SIFT descriptors as done in [49] with the larger spatial

span of HL filters our model generates 76.32% in classification

score reaching state-of-the-art level on models using mono

features descriptors (i.e. derivative filters, band-pass filters). A

mean comparison Student t-test shows the increase over [49]

to be significant with a risk α = 0.05.

2) Caltech256: Table VI shows classification results on the

Caltech256 data set. As for Caltech101, the basic architecture

trains 40 HL filters per category for a total of M = 10280
HL filters. Again our model reaches state-of-the-art scores on

similar architectures using a 4 layer architecture with convolu-

tion and maximum pooling as in [47]. When combining with

the pixel level gradient of [49] our score reaches near state-of-

the-art and improves the scores in [49] by close to 7%, clearly

above statistical significance at a risk α = 0.05.

Our model

|S| = 1 ∪ 7
+ multi-resolution pooling 31.23 ±0.38

+ pixel level gradient 40.56 ±0.28

Deep biologically inspired architectures

Zeiler et al. [47] 33.2±0.8
Bow architectures

Yang et al. [49] 34.02±0.35
Wang et al. [27] 41.19

Boureau et al. [51] 41.7 ±0.8

TABLE VI
CLASSIFICATION RESULTS IN AVERAGE PRECISION CALTECH256 FOR 30

TRAINING EXAMPLES.
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3) Fifteen Scenes: For the Fifteen Scenes data set, our basic

architecture trains 300 HL filters per category for a total of

M = 4500 HL filters. Table VII shows the confusion matrix of

our network applied to the Fifteen Scenes set. As for the Cal-

tech101 image set we combine the complementary mid-level

descriptions of our HL filters with the pixel level descriptions

of SIFT as in [49]. Our global average classification score

of 82.94% is above or close to benchmark results obtained

in [31], [25]. A mean comparison Student t-test shows the

increase over [49] to be significant with a risk α = 0.05.

More importantly, as shown in table VIII our standard model

improves our reimplementation of [1],[19] by over 10% and

20% respectively.
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bedroom 0.89 0.01 0.03 0.03.
calsub.. 0.710.05 0.02 0.130.04 0.01
indust.. 0.030.76 0.01 0.010.060.02 0.05
kitchen 0.93 0.020.01 0.01
living.. 0.01 0.81 0.14 0.01 0.01
coast 0.02 0.01 0.06 0.6 0.01 0.040.01 0.010.180.01
forest 0.01 0.1 0.79 0.1 0.03 0.01

highway 0.01 0.910.03 0.02
insid.. 0.010.04 0.02 0.030.84

mount.. 0.02 0.120.10 0.010.010.640.03 0.06
country 0.03 0.030.91
street 0.02 0.95
build.. 0.01 0.98
paroff.. 0.01 0.010.01 0.01 0.020.070.05 0.01 0.76
store 0.02 0.01 0.01 0.91

TABLE VII
CONFUSION MATRIX FOR 15 scenes IMAGE SET

Our model

|S| = 1 ∪ 7
+ multi-resolution pooling 74.35 ±0.83

+ pixel level gradient 82.94 ±0.57

Deep biologically inspired architectures

Mutch&Lowe [1] 63.5
Serre et al. [19] 53.0

Bow architectures

Lazebnik et al. [31] 81.4 ±0.45
Yang et al. [49] 80.4 ±0.45

Boureau et al. [25] 84.3±0.45

TABLE VIII
CLASSIFICATION RESULTS IN AVERAGE PRECISION ON FIFTEEN SCENES

FOR 100 TRAINING EXAMPLES. SCORES FOR [1],[19] ARE OBTAINED BY

OUR OWN REIMPLEMENTATION.

The high discriminative power of our deepest HL filters is

made obvious for certain categories in the Fifteen Scenes im-

age set. For instance, our model consistently gives near perfect

classification score for the Building category. This category

showcases our model’s ability to fit arrays of simple, scaled

and oriented local structures. Categories such as Building are

mostly composed of well defined local structures of multiple

scales and orientations. Our most discriminative HL filters

(|S| = 7) are well suited for this type of image stimuli. Indeed,

our HL filters are expected to find close to optimal fit on

organized patterns of clear-cut structures. This translates quite

well into the high classification score obtained for the Building

category, also illustrated in figure 11

Fig. 11. The building categories showcases our model’s ability to consis-
tently fit arrays of simple, scaled and oriented local structures.

C. Computation time

We used a 8 core PC at 3.47MHz, using a simple and

non-optimized Matlab code. Generating image signatures is

faster then a regular sparse code BoW model thanks to

our feedforward architecture. Activating layers L1− L2 is

fast (∼1 sec) using simple convolution functions. Activating

layer L3 is more computationally demanding since it requires

convolution of, for example, M ∼ 4080 HL filters which

are coded as high dimension matrices. The total feedforward

activation of one image through the network takes roughly 4

seconds. Training the HL filters, is fast since it only requires

activation of layers L1− L2. For example, on Caltech101,

training M ∼ 4080 HL filters takes close to 1 hour. Training

and testing the classifier can be costly since we used a classifier

with a L2 norm gaussian kernel. Depending on the size of the

data set, computing the kernel can be time demanding: close

to 1 hour for Caltech101. Timing is proportional for the other

data sets.

VI. FURTHER ANALYSIS

Here we give quantitative and qualitative explanations with

respect to the improvements gained from our HL filters with

multiple scales

Recall that the two key properties of our HL filters are their

discriminative power and their invariance level. A good bal-

ance between discriminative power and invariance is necessary

for classification tasks. As illustrated in figure 10 different ob-

jects can be matched by HL filters with different scale depths.

While some objects are matched using a single scale HL filter

(more freedom for scale invariance), others are matched using

HL filters with multiple scales (more discriminative).

To evaluate more precisely the invariant and discriminative

properties of our HL filters, we generated 1000 synthetic
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Fig. 10. HL filters visualization. Trained HL filters on some of the images in figure 9. The yellow bounding box defines the spatial range of the HL filter.
The red ellipses indicate the local scales and orientations of the Gabor filters selected by the HL filter.

toy images. These synthetic images are generated from the

superposition of thresholded Gabor filters with varying scales,

orientations and positions as shown in figure 12. More pre-

cisely, the images consists of keeping the central part of

Gabor filters (equation 1) corresponding to a full wavelength

λ. This is a simple way of generating images where the

local structures correspond to ideal inputs. Although the

Caltech101,Caltech256 and the Fifteen Scenes sets are widely

used for image classification, such image set make it difficult

to evaluate the invariant properties of filters under various

geometrical transformations [42], [52]. By using synthetic

images we are able to control parameters such as translation,

rotation and scaling and evaluate the invariance level of our

filters under such transformations.

Fig. 12. Synthetic images: composed of non rigid arrays of Gabor filters.
Each local feature is thresholded to cover one wavelength as defined in
equation 1

A. Discriminative power of HL filters: fitness error

This section evaluates the discriminative power of our HL

filters. To do so we measure the fitness error of our HL

filters on training images and compare the results to our

reimplementation of previous models [19], [1].

Since αm ∈ R
n×n×|S|×|Θ| and because 0 ≤ αm

i,j,σ,θ
≤ 1, it

follows from equation 6 that
∑

i,j,σ,θ

αm

i,j,σ,θ
≤ n2. We can then

define the fitness error of each HL filter by

e = n2 −
∑

i,j,σ,θ

αm

i,j,σ,θ
. (9)

Figure 13 shows the average fitness error with respect to

the scale range |S| of HL filters as defined in section IV. The

graph shows that HL filters with deeper scales are on average

better tuned to the training images structures and thus more

discriminative.

Fig. 13. Training image fit. Fitness error is lower with increasing scale
range S ⊆ S of HL filters. All of our HL filters give better fit to local image
structures than HL filters used in [19], [1]. As expected the more scales are
available for training the HL filters the more they fit local image structures.

Figure 14 illustrates 2 different synthetic image patches

composed of 4 × 4 Gabor features. For clearer visualization,

the Gabor features are spread at a constant distance from

each other. The red ellipses indicates the learned scales and

orientations after training a 4 × 4 HL filter over each patch.

The left image shows the fitting obtained for a HL filter

using all available scales (|S| = 7). Clearly the local scale

and orientation learned by the HL filters fit the local image

structure. The right image shows the training misfit obtained

when using a single-scale HL filter as it is the case for our

reimplementation of [1].

B. Invariance level of HL filters

As mentioned above a good balance between discriminative

power and invariance is necessary for classification tasks. This

section evaluates the invariance level generated by our HL

filters under various local transformations. For this purpose

we evaluate the invariance of the HL filters outputs with re-

spect to local geometrical transformations such as translation,
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Fig. 14. Toy example: trained HL filter one synthetic image patch. On the
left image a filter with full scale depth (|S| = 7) is trained. The red ellipses
indicate the local scales and orientations learned by the HL filter. The filter
clearly matches the local image structures. The right image shows the local
misalignment of the filter when limited to one randomly chosen scale as in
[1].

rotation and scaling. All these local transformations lead to

global deformations at object level. Robustness to these local

transformations is therefore a key aspect to good classification.

1) Local translation: One property gained by training HL

filters with a lower fitness error is to increase the network

invariance level to basic local geometrical transformations.

For example, global deformations observed at object level

can be decomposed into local translations [15] which can be

minimized by our HL filters. To evaluate the effect of local

translations on the output of our network we first generate

1000 synthetic image patches and train one HL filter on each

patch according to equation 6. This generates 1000 HL filters

optimally fitting the corresponding image patch as shown on

the left in figure 14. After training we apply local translations

(see figure 15) of increasing amplitude on each training image

and measure the output of each corresponding HL filter on the

transformed image.

Local translationLocal rotation

Fig. 15. Local transformations. Rotation and translation are applied
individually to each local feature in the image patch to create a globally
distorted image. The distorted images are then used to measure the robustness
of HL filters.

As shown in figure 16, the output of HL filters decreases

with increasing local translations. The decrease is less pro-

nounced in the case of HL filters with a deep scale range,

showing more local translation invariance (i.e. global defor-

mation). Indeed by using the optimal local scale, the deeper

HL filters pool from a corresponding local neighborhood as

defined in equation 3 and table II in such a way that larger

structures are pooled invariably from larger spatial regions at

the L2 level.

Fig. 16. Effect on local translations with respect to scale depth of HL filters.
When compared to HL filters has the ones used in [19], [1], our HL filter
with deeper scale range are less sensitive to image deformations created by
local translations

2) Local Rotation: Yet another advantage of training HL

filters with a lower fitness error is that they are locally aligned

with the axis of relevant image structures and are thus less

sensitive to local perturbations around this axis. To evaluate the

level of invariance of HL filters with respect to local rotation

we use the same procedure as for local translation but instead

apply local rotation of increasing amplitude on the training

images. Figure 17 shows a lesser decrease in matching score

for deeper our HL filters compared with the ones used in [1],

[19]. Deeper HL filters are less sensitive to image deformations

created by local rotations. This is explained, as shown in

figure 14, by the fact that deep HL filter are better aligned, or

centered, with the local structures of images. Consequently a

local rotation will not affect the HL filter response as much

as it is the case for misaligned HL filters as obtained for our

reimplementation of [1], [19].

3) Local Scaling: Local scaling in our network underlines

particularly well the necessary balance between discriminative

power and invariance for classification. When local scaling

is applied in the same way as for translation and rotation

a different pattern is observed. HL filters with maximum

scale depth (|S| = 7) are more discriminative as shown in

section VI-A but are less robust to local scaling than other

HL filters (|S| = 3, 5). The deepest HL filter uses all available

network scales to fit the image patches. It optimally matches

the image local scales and as result has more discriminative

power. However it leaves no freedom to find a perfect match at

other scales. The high level of discriminative power gained by

using all scales makes the HL filter with |S| = 7 less invariant

to scaling in comparison to HL filters with less depth. On

the other hand too much invariance to local transformations

compromises the discriminative power of the network. As

shown in section V-B a balance between discriminative and

invariant properties of HL filters generates better classification

performances.
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Fig. 17. Effect on local rotation with respect to scale depth of HL filters.
Our HL filter with deeper scale range are more robust to image distortion
created by local rotation.

Fig. 18. Effect on local scaling. HL filters with more scale depth are
less robust to local scaling. Too much invariance as in [19] leeds to less
discrimination, reducing classification power of the network. Optimally, our
network combines the invariant and discriminative aspects of all HL filters to
increase classification results in section V-B.

C. Discussion regarding potential relationships with biologi-

cal systems

Neurophysiological studies [53] suggest that the spatial

receptive field profiles of neurons observed in cortical area

V4 is constructed by pooling from specific orientation and

spatial spatial frequency channels from more peripheral stages

of visual processing. In particular, other studies [54], [55]

also suggest that many neurons in area V4 are sensitive

to boundary information (i.e. orientation,scales) at a specific

position relative to the object center. These findings share

some principles with our HL filters which are sensitive not

only to multiple orientations at different positions from the

center of their receptive fields but also to multiple scales.

Also, recordings of neurons in the inferior temporal visual

cortex (IT) show that these neurons have limited receptive

fields of various sizes [14]. In particular neurophysiological

[56], [57] studies suggest that information about the relative

spatial positions of objects at different eccentricities from the

fixation point, is coded by a population of IT neurons with

various receptive field sizes. Moreover, the sizes of these

receptive fields vary in the presence of other objects and

background. These neurons can be seen as pooling over local

regions of different sizes on the visual field, which results in

partial invariance to spatial position. These findings also share

some principles with our model where pooling HL filters over

multiple radii at layer L4 encodes the relative spatial position

of features.

VII. CONCLUSION

The architecture presented in this paper allows for the

manipulation of two crucial variables for image classifica-

tion: discriminability and invariance. Our filters are modeled

and trained to optimally fit local image structures and as

a results, generate a good balance between discriminative

representations and invariance. In particular, our results on

three natural image sets and one synthetic image set highlight

the increase in discriminative power of our network as well as

its robustness to local geometrical transformations. Moreover,

spatial organization of local features into a global representa-

tion is a key aspect to image recognition. In this regard, the

multi-resolution pooling introduced in this paper provides rich

spatial information, resulting in improved classification scores.
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