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ABSTRACT

In image classification, the most powerful statistical learning ap-
proaches are based on the Bag-of-Words paradigm. In this article,
we propose an extension of this formalism. Considering the Bag-of-
Features, dictionary coding and pooling steps, we propose to focus
on the pooling step. Instead of using the classical sum or max pool-
ing strategies, we introduced a density function-based pooling strat-
egy. This flexible formalism allows us to better represent the links
between dictionary codewords and local descriptors in the resulting
image signature. We evaluate our approach in two very challeng-
ing tasks of video and image classification, involving very high level
semantic categories with large and nuanced visual diversity.

Index Terms— Image classification, pattern recognition, Bag-
of-Features, Bag-of-Words, visual dictionary, max pooling, sum
pooling, SVM

1. INTRODUCTION

For image retrieval and classification tasks, some methods use com-
plex structured models [1] to represent specific types of object, e.g.
humans. Nevertheless, other approaches represent images by order-
less local descriptors, such as the Bag-of-Words (BoW) model [2].
BoW becomes popular due to its simplicity and good performance.
Inspired by the Bag-of-Words model from text retrieval [3], where a
document is represented by a set of words, the BoW representation
describes an image as a histogram of the occurrence rate of “words”
in a vocabulary induced by quantizing the space of a low-level local
descriptor (e.g., SIFT [4]).

The basic BoW representation has important limitations, and
several improvements have been suggested. To overcome the loss
of spatial information, separate BoWs can be computed in different
sub-regions of the image, as in the Spatial Pyramid Matching (SPM)
scheme [5]. To attenuate the effect of coding errors induced by the
descriptor space quantization, one can rely on soft assignment [6]
or explicitly minimize reconstruction errors, e.g. Local Linear Cod-
ing [7]. Finally, averaging local descriptor contributions (sum pool-
ing) can be reconsidered by studying alternative (more biologically
plausible) pooling schemes, e.g. max pooling [8].

Our approach follows the BoW formalism, but proposes a new
representation of images which keeps more information than BoW
during the pooling step is proposed. The introduction of that new
pooling function is the main contribution of this work. The resulting
image signature process, called BOSSA (Bag Of Statistical Sam-
pling Analysis), is based on a statistical analysis of the contribution
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of the local features to each visual word. Like [9], we carefully
parametrize and normalize each block contribution, that are then
concatenated all together to form a super-vector signature, with a
reasonable vector dimensionality.

2. BOW FORMALISM

Let us denote the set of local descriptors, i.e. the Bag-of-Featu-
res (BoF), by X = {xj}, j ∈ {1;N}, where each local feature
xj ∈ IRd and N is the number of local regions of interests on the
image. In the BoW model, let us denote the visual dictionary as
C = {Cm}, m ∈ {1;M}, where M is the number of visual words.
Z ∈ IRM is the final vectorial representation of the image used for
classification. In all the improvements over the basic BoW model,
the mapping from X to Z can be decomposed into three successive
steps, as formalized in [10]. The first step is a coding phase, where
each local descriptor is projected to the visual dictionary. This cod-
ing phase can be modeled by a function f :

f : IRd −→ IRM

xj −→ f(xj) = αj = {αm,j} , m ∈ {1;M} (1)

As illustrated in Figure 1, if we represent a matrix H with
columns X and rows C, the coding function f for a given descrip-
tor xj corresponds to the jst column. The second step is a pooling
step, that can be modeled by the following function g:

g : IRN −→ IR
αm = {αm,j} , j ∈ {1;N} −→ g(αm) = zm (2)

The pooling function g for a given visual word cm corresponds
to the mst row of the H matrix, as shown in Figure 1.

Fig. 1. BoW: H matrix representing coding and pooling functions.

For example, in the basic BoW representation:



• f = fQ assigns a constant weight to its closest center:

fQ(xj) =

1 if m = argmin
k∈{1;M}

‖xj − ck‖2

0 otherwise
(3)

• g computes the sum over the pooling region

zm =

N∑
j=1

αm,j (4)

The vector Z, the final image representation, is given by sequen-
tially coding, pooling and concatenating: Z = [z1, z2, · · · , zM ]T .
Regarding image categorization, the aim is to find out which opera-
tors f and g provide the best classification performance using z as
input.

3. BOSSA: EXTENDING THE BOW POOLING

In this paper, we propose a new representation of images extend-
ing the BoW approach, called BOSSA (Bag Of Statistical Sampling
Analysis). Basically, the idea is to keep more information than the
BoW during the pooling step. Indeed, in BoW, the pooling step sum-
marizes the vectorial information contained in αm,j into a single
scalar value (Equation 2): e.g. sum or max pooling. Instead, we
propose here to estimate the distribution, i.e. the probability density
function (pdf), of these αm,j .

3.1. Formalism

Regarding the coding function f defined in Section 2, each αm,j co-
efficient traditionally quantifies a similarity between the descrip-
tor xj and the cluster cm. In the following, however, αm,j represents
a dissimilarity (i.e. a distance) between cm and xj1.

Therefore, keeping the same notations as in Section 2, the pro-
posed modified g function aims at estimating the probability den-
sity function of αm: g(αm) = pdf(αm). We choose to estimate
pdf(αm) by computing the following histogram of distances:

g : IRN −→ IRB

αm −→ g(αm) = zm

zm,k = card
(
xj |αm,j ∈ αmax

m ·
[ k
B
;
k + 1

B

])
(5)

where B denotes the number of bins of each histogram zm, and
αmax
m is a parameter defined in Section 3.2.1. Thus, the g func-

tion represents the discrete (over B bins) density distribution of the
distances αm,j among the center cm and the local descriptors of an
image.

This step is illustrated on Figure 2. For each center cm, we ob-
tain a local histogram zm. The histogram colors indicate the dis-
cretized spatial distances from the center cm to the local descriptors
shown by the black dots. For each colored bin zm,k, the height of the
histogram is equal to the number of local descriptors xj which dis-
cretized distance with respect to cluster cm fall into the kth bin. We
can note that if B = 1, the histogram zm reduces to a single scalar
value counting the number of points xj falling into center cm. There-
fore, the proposed histogram representation can be considered as a
consistent generalization of the BoW pooling step.

1This is performed without loss of generality, since estimating a similarity
pdf for αm,j from our model is straightforward. However, using rather a
distance pdf makes illustrations clearer and more intuitive.

Fig. 2. Illustration of local histogram zm.

After computing a local histogram zm for all the cm centers, we
concatenate them to form the whole image representation. In addi-
tion, since we choose to `1 normalize each histogram zm (see Sec-
tion 3.2.2), the occurrence rate of each visual word cm in the image
is lost. To overcome this shortcoming, we propose to incorporate in
our image representation Z an additional scalar value, which we de-
note as Nm, counting the number of points xj falling at each center
cm. Thus, our final image representation Z can be rewritten as:

Z = [[zm,k] , Nm]T (m, k) ∈ {1;M} × {1;B} (6)

Z is a vector of sizeD =M×(B+1), as illustrated in Figure 3.

Fig. 3. Visual representation of BOSSA vector construction.

The idea enriching the BoW representation with extra knowl-
edge from the set of local descriptors has been explored in [11, 12].
It is interesting to note, however, that those proposals rely in sophis-
ticated statistical models, leading to very high-dimensional image
representations. By using a simple histogram of distances to cap-
ture the relevant information, our approach remains very flexible and
keeps the representation compact.

3.2. Implementation

3.2.1. Parameters

Our representation is defined by the three followings parameters:
the number of visual words M , the number of bins B in each his-
togram zm, and the maximum distance αmax

m in the IRd feature space
to which zm is computed (Equation 5).

M has a similar meaning than in standard BoW approaches.
B defines the granularity to which pdf(αm) is estimated. The
choices of M and B are co-dependent, and M · B determines the
compromise between accuracy and robustness. The smaller M · B,
the less the representation is accurate, the larger M · B, the less the
statistical estimate of the underlying distribution is confident (too
large M ·B values may lead to sparse vectorial representations). In
our experiments, we use M ∼ 500 and B in the range [2; 10].

Finally, αmax
m is set up differently in each cluster cm. Since our

visual dictionary is built from a clustering algorithm (e.g. k-means),



we take advantage of the size (i.e. standard deviation σm) of the
mth, so that αmax

m = λ · σm, as shown in Figure 4. In practice,
the two parameters of the BOSSA approach are B (M being fixed)
and λ. In our experiments, we consider λ from 1 to 3.

Fig. 4. Illustration of αmax
m parameter.

3.2.2. Normalization

The spatial information provided by bin counts in local histogram zm
is independent of spatial information provided by local histogram zk
for m 6= k. Therefore, we opted for histogram-wise normalization
instead of globally normalizing z. We obtained our best results when
using `1-normalization on each zm, i.e. zm = zm/‖zm‖1.

Figure 5 illustrates the proposed image representations. We can
notice the relevance of the improved BoW scheme, since intra-class
variability is small whereas inter-class variability is large.

Fig. 5. Extracts of BOSSA signature on Oxford Flowers dataset.
Images (left or right side) and the corresponding extracts BOSSA
descriptors (middle grey level images).

4. EXPERIMENTAL RESULTS

We apply our proposal on two challenging datasets: Oxford Flow-
ers [13] (image classification) and Pornography (video classifica-
tion). As a low-level local descriptor, we have employed Hue-
SIFT [14], a SIFT variant including color information, which is
particularly relevant for our datasets. The 165-dimensional Hue-
SIFT descriptors are extracted densely every 6 pixels.

We create a vocabulary by k-means clustering algorithm with
Euclidean distance, fixing on 10% the number of sampling HueSIFT
points. The vocabulary sizes we consider are {128, 256, 512}.

For classification, we apply the popular maximum-margin SVM
classifier, specifically a non-linear χ kernel and the one-versus-all
approach for multi-class approach. Kernel matrices are computed as
exp(−γd(x, x′)) with d being the distance and γ being fixed to the
inverse of the pairwise distances mean.

We compare the performance of the classic BoW with the pro-
posed BOSSA approach, which is an extension of the former.

4.1. Oxford Flowers

The Oxford Flowers dataset [13] contains 17 different flower cate-
gories with 80 images per category. Example images are shown in
Figure 6.

Fig. 6. Example images from Oxford Flowers (one per category).
The difference among categories is often subtle, even for humans.

The dataset comes already separated into three different folds,
each with its own training (17 × 40 images), validation (17 × 20
images) and test sets (17× 20 images). The accuracy rate is reported
by the average scores of the three folds.

We use of the validation set to cross valid the parameterB (num-
ber of bins) with several values of dictionary size (from 128 to 512).

Table 1 presents the results for BOSSA and BOW using their
best tested configuration parameters, namely M = 512, B = 6,
λ = 2, C-SVMBOSSA = 10 and C-SVMBoW = 1.

Table 1. BOSSA and BoW classification performances on the Ox-
ford Flowers.

BOSSA BoW
Acc.(%) 64 59
std (%) ±2 ±1

Our BOSSA approach gives the best accuracy results compar-
ing to the classical BoW approach on this dataset. In order to re-
ally appreciate the improvement coming from the difference between
BOSSA and BoW, we do not have considered in our experiments
extended representations of the BoW as the spatial pyramid repre-
sentation of Lazebnik et al. [5] or any others. It will be interesting
to consider feature combination expansions as we know that much
higher scores may be obtained in classification when this combina-
tion is learnt [15].

4.2. Pornography database

We have also evaluated our approach after a real-world application,
pornographic detection. The Pornography dataset contains nearly
80 hours of 400 pornographic and 400 non-pornographic videos.
For the pornographic class, we have browsed websites which only



host this kind of material. For the non-pornographic class, we have
browsed general-public purpose video network and selected two
samples: 200 videos chosen at random (which we called “easy”)
and 200 videos selected from textual search queries like “beach”,
“wrestling”, “swimming”, which we knew would be particularly
challenging for the detector (“difficult”). Figure 7 shows selected
frames from the dataset.

Fig. 7. Illustration of the diversity of the pornographic videos (top
row) and the challenges of the “difficult” non-pornographic ones
(middle row). The easy cases are shown at bottom row. The huge
diversity of cases in both pornographic and non pornographic videos
makes this task very challenging.

We preprocess this dataset by segmenting videos into shots. An
industry-standard segmentation software2 has been used. As it is
often done in video analysis, a key-frame is selected to summarize
the content of the shot into a static image. In our case, we have just
selected the middle frame of each shot.

Both BoW and BOSSA image signatures are computed and used
to train SVM and classify images. The image classification rate is
reported by the mean average precision (MAP). For SVM, we use a
5-fold cross-validation to tune the best C parameter. Each method
has been optimized considering its parameters (codebook size, nor-
malization, etc.).

Table 2 shows the results for each method to their best tested
configuration parameters (M = 256, B = 10, λ = 3, C-
SVMBOSSA = 10 and C-SVMBoW = 1).

Table 2. BOSSA and BoW classification performances on the
pornographic database. MAP are computed at image classification
level, and Accuracy rate are reported for video shot classification.

MAP (frames) Acc. rate (videos)
BOSSA (%) 95± 1 87± 2
BoW (%) 91± 1 83± 3

In both Oxford Flowers and Pornography datasets, BOSSA out-
performs the BoW approach, with a 4%-5% of improvement.

5. CONCLUSION

We proposed in this paper a new representation of images for clas-
sification tasks. Analyzing the popular Bag-of-Words scheme, we
pointed out weakness in the standard pooling operation used in the
BoW signature generation. The BOSSA scheme presented here of-
fers a more information-preserving pooling operation based on a

2http://www.stoik.com/products/svc/

distance-to-codeword distribution. With this improvement to the ba-
sic pooling scheme, we carried out our final super-vector image sig-
nature used in SVM framework for classification.

Our scheme has the advantage of being conceptually simple,
non-parametric and easily adaptable. Compared to other schemes
existing in the literature to add information to the BoW model, it
leads to much more compact representations.

We experimentally compared the performances of our BOSSA
algorithm with the classic BoW on a standard image flower dataset as
well as on a realistic application. In both cases, BOSSA performed
better than BoW.

Feature combinations in a kernel learning framework is cur-
rently investigated in order to take advantages of all the features
together.
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