Combining complementary kernels in complex visual categorization

{nicolas.thome, matthieu.cord}@lip6.fr¹, picard@ensea.fr²

¹LIP6, UPMC Paris 6, France ²ETIS, ENSEA/CNRS/Université de Cergy Pontoise, France

Two kernel-learning proposed algorithms:

1. Hybrid strategy published in [1]: new MKL algorithm ⇒ non-sparse combination between different image modalities

2. Unpublished work: learning a powered product of kernels, denoted **Product Kernel Learning** (PKL).

Hybrid MKL-scheme

Non-sparse combination between \neq image modalities, still using ℓ_1 optimisation scheme

Idea: Each descriptor \Rightarrow numerous kernels with varying parameters (*e.g.* σ for gaussian)

- Each channel c: set of M kernels $K_{c,\sigma}$
- ℓ_1 MKL strategy to select the relevant σ parameter (SimpleMKL [2])

Adapted MKL problem formulation:

$$f(\mathbf{x}) = \sum_{i=1}^{N_e} \alpha_i y_i \sum_{c=1}^{N_c} \sum_{\sigma=\sigma_1}^{\sigma_M} \beta_{c,\sigma} k_{c,\sigma}(\mathbf{x}, \mathbf{x}_i) - b$$

joint optimization performed on α_i (N_e parameters) and $\beta_{c,\sigma}$ ($N_c \times M$ parameters).

• Kernel parameter tuning & learning at the same time: option to cross-validation $(\neq [3])$.

Product Kernel Learning: PKL

Geometric combination of kernels

$$K(\mathbf{x}_1, \mathbf{x}_2) = \prod_c k_c(\mathbf{x}_1, \mathbf{x}_2)^{\beta_c}$$

Adapted PKL problem formulation:

$$f(x) = \sum_{i} \alpha_{i} y_{i} \prod_{c} k_{c}(\mathbf{x}_{i}, \mathbf{x})^{\beta_{c}} - b$$

As in MKL: jointly learning α_i and β_c

- Algorithm for exponential kernels: $k_c(\mathbf{x}_1, \mathbf{x}_2) = e^{-\beta_c d_c^2(\mathbf{x}_1, \mathbf{x}_2)}$
- Alternate optimization scheme:
 - 1. Classic SVM solver on α
 - 2. Approximate second order gradient descent on β
- Step 1 convex, Step 2 not
 ⇒ overall problem not convex.

Results

UCI Toys like datasets for algorithm validation. Combination of Gaussian kernels on each axis.

DATA SET	<i>ℓ</i> ₁ -MKL (%)	PKL (%)
INONOSPHERE	89.0 ± 2.1	94.2 ± 1.4
SONAR	83.8 ± 3.8	86.2 ± 4.5

\Rightarrow PKL is competitive to existing MKL algorithms: more accurate, sparser, faster

VOC 2009 Categorization with multiple visual features (15 kernels, 150 for hybrid strategy).

aeroplane bicycle bottle bird boat bus chair **COW** dog table bike horse plant sheep sofa train person tv

category	SIFT	Prod	Avg	ℓ_1 -MKL [2]	ℓ_2 -MKL [3]	Hybrid-MKL [1]	PKL
aeroplane	79.5	78.3	77.9	79.7	79.3	79.7	79.7
bicycle	46.9	45.9	46.0	47.8	47.9	48.3	47.0
bird	55.9	53.0	54.4	56.5	57.5	57.4	57.0
boat	61.4	56.9	56.4	62.3	60.1	62.8	62.2
bottle	17.6	18.7	19.1	19.5	19.8	20.1	19.2
bus	71.4	69.2	69.8	72.3	72.0	72.3	71.5
car	49.7	49.5	49.1	50.4	50.2	51.2	51.7
cat	54.8	54.4	54.1	56.8	57.2	57.0	56.8
chair	43.3	41.2	41.5	42.3	42.8	43.6	43.4
COW	21.1	24.3	24.7	21.7	25.1	24.9	26.5
dining-table	35.9	30.1	31.2	35.5	34.4	35.6	36.0
dog	39.1	35.8	35.2	37.4	37.4	38.2	39.4
horse	47.5	40.1	40.8	46.0	43.8	45.1	47.3
motorbike	46.3	54.9	55.3	53.2	56.0	55.8	55.0
person	82.0	81.8	81.7	82.5	82.8	82.9	82.8
potted-plant	23.0	29.9	30.9	30.7	31.8	31.3	29.4
sheep	33.0	24.8	26.7	30.1	31.7	30.7	32.9
sofa	32.6	25.9	25.3	32.5	29.9	32.0	33.2
train	68.2	67.1	67.5	69.9	69.5	69.8	69.4
tv-monitor	51.6	51.0	50.4	54.0	53.6	53.5	52.5
mean	48.0	46.7	46.9	49.0	49.1	49.6	49.6

- Learned kernel combinations outperform best performing kernel (SIFT)
 - False for uniform weighting (averaging-product) \neq [4]
 - Uniform weighting sub-optimal as soon as large performance variation between kernels
- Sparse v.s. dense combination: task-dependent (Learning ℓ_p norm c.f. [5])
 - Experimentally, Hybrid ℓ_1 -MKL: good compromise between ℓ_1 and ℓ_2
- Globally, hybrid ℓ_1 -MKL and PKL offer best MAP, but slight improvement

Discussion

- Unsucessful experiment: PKL for discriminative dictionnary learning, see [6]
- Unsucessful experiment: PKL for detector/descriptor combination, see [7]
- Sum or Product Kernel Learning?
 - (a) Complementary Kernels ⇒ Sum

 K_s (Sum)

 K_p (Prod)

• Complementarity/Redundancy: metric ? Kernel correlation, Q-Stat, *ρ*-Stat ?

 K_2

 Not effective in real image databases (VOC)

References

 K_1

- [1] David Picard, Nicolas Thome, and Matthieu Cord, "An efficient system for combining complementary kernels in complex visual categorization tasks," in *ICIP*, 2010, pp. 3877–3880
- [2] Alain Rakotomamonjy, Francis Bach, Stephane Canu, and Yves Grandvalet, "SimpleMKL," *JMLR*, vol. 9, pp. 2491–2521, 2008.
- [3] Marius Kloft, Ulf Brefeld, Soeren Sonnenburg, Pavel Laskov, Klaus-Robert Müller, and Alexander Zien, "Efficient and accurate lp-norm multiple kernel learning," in *NIPS*, pp. 997–1005. 2009.
- [4] Peter V. Gehler and Sebastian Nowozin, "On feature combination for multiclass object classification," in *IEEE ICCV*, 2009.
- [5] Fei Yan, Krystian Mikolajczyk, Mark Barnard, Hongping Cai, and Josef Kittler, "Lp norm multiple kernel fisher discriminant analysis for object and image categorisation," in *IEEE CVPR*, 2010.
- [6] H. Cai, F. Yan, and K. Mikolajczyk, "Learning weights for codebook in image classification and retrieval," in *IEEE Conference on Computer Vision and Pattern Recognition*, 2010.
- [7] Marcin Marszałek, Cordelia Schmid, Hedi Harzallah, and Joost van de Weijer, "Learning object representations for visual object class recognition," oct 2007, Visual Recognition Challange workshop, in conjunction with ICCV.