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Contribution

Two kernel-learning proposed algorithms:

1. Hybrid strategy published in [1]: new
MKL algorithm = non-sparse combina-
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2. Unpublished work: learning a powered

product of kernels, denoted Product Ker-
nel Learning (PKL).

Results

UCI Toys like datasets for a

Hybrid MKL-scheme

Non-sparse combination between =+ image
modalities, still using /; optimisation scheme

Idea: Each descriptor = numerous kernels
with varying parameters (e.g. o for gaussian)

e Each channel

 c: set of M kernels K. ,

e /1 MKL stra

egy to select the relevant o

parameter (SimpleMKL [2])

Adapted MKL problem formulation:
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joint optimization performed on «; (N, param-

eters) and 3. , (V¢

x M parameters).

e Kernel parameter tuning & learning at
the same time: option to cross-validation

(7 [3)).

gorithm validation. Combination of Gaussian kernels on each axis.

DATA SET 0,-MKL (%) _ PKL (%)
INONOSPHERE 89.0 2.1 94.2 + 1.4
SONAR 83.8 £ 3.8 86.2 4.5

= PKL is competitive to existing MKL algorithms: more accurate, sparser, faster

VOC 2009 Categorization with multiple visual features (15 kernels, 150 for hybrid strategy).
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category SIFT || Prod | Avg || ¢/;-MKL [2] | ¢/5-MKL [3] || Hybrid-MKL [1] | PKL
aeroplane 79.5 || 783 | 77.9 79.7 79.3 79.7 79.7
bicycle 469 || 459 | 46.0 47.8 47.9 48.3 47.0
bird 559 || 53.0 | 544 56.5 57.5 57.4 57.0
boat 614 || 569 | 564 62.3 60.1 62.8 62.2
bottle 17.6 || 18.7 | 19.1 19.5 19.8 20.1 19.2
bus 71.4 || 69.2 | 69.8 72.3 72.0 72.3 71.5
car 49.7 || 49.5 | 49.1 50.4 50.2 51.2 51.7
cat 54.8 || 544 | 54.1 56.8 57.2 57.0 56.8
chair 43.3 || 41.2 | 41.5 42.3 42.8 43.6 43.4
COW 21.1 || 243 | 247 21.7 25.1 24.9 26.5
dining-table || 35.9 || 30.1 | 31.2 35.5 34.4 35.6 36.0
dog 39.1 || 35.8 | 35.2 37.4 37.4 38.2 39.4
horse 47.5 || 40.1 | 40.8 46.0 43.8 45.1 47.3
motorbike 46.3 || 549 | 55.3 53.2 56.0 55.8 55.0
person 82.0 || 81.8 | 81.7 82.5 82.8 82.9 82.8
potted-plant | 23.0 || 29.9 | 30.9 30.7 31.8 31.3 29.4
sheep 33.0 || 248 | 26.7 30.1 31.7 30.7 32.9
sofa 32.6 || 259 | 25.3 32.5 29.9 32.0 33.2
train 68.2 || 67.1 | 67.5 69.9 69.5 69.8 69.4
tv-monitor 51.6 || 51.0 | 50.4 54.0 53.6 53.5 52.5
mean 48.0 || 46.7 | 46.9 49.0 49.1 49.6 49.6

o Learned kernel combinations outperform best performing kernel (SIFT)

— False for uniform weighting (averaging-product) # [4]

— Uniform weighting sub-optimal as soon as large performance variation between kernels

e Sparse v.s. dense combination: task-dependent (Learning ¢, norm c.f. [5])
— Experimentally, Hybrid ¢;-MKL: good compromise between ¢; and ¢

e Globally, hybrid ¢;-MKL and PKL offer best MAP, but slight improvement
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Product Kernel Learning: PKL

Geometric combination of kernels

K(X17 X2) — H kC(Xla XZ)BC

Adapted PKL problem formulation:

f(x) = Zaiyi H ke(xi,x)% — b

As in MKL: jointly learning «; and £,

o Algorithm for exponential kernels:

kc (Xl : XQ) — e_ﬁcdi(xl ,X2)

e Alternate optimization scheme:

1. Classic SVM solver on «
2. Approximate second order gradient

descent on

e Step 1 convex, Step 2 not
= overall problem not convex.

Discussion

e Unsucessful experiment: PKL for dis-
criminative dictionnary learning, see [6]

e Unsucessful experiment: PKL for detec-
tor /descriptor combination, see [7]

e Sum or Product Kernel Learning ?

(a) Coplementa Kernels = Sum

K Ko

(bRedunnt Kemes = Product

Ks (Sum) K, (Prod)

K (Sum) K, (Pr)

e Complementarity/Redundancy: metric ?
Kernel correlation, Q-Stat, p-Stat ?

e Not effective in real image databases
(VOC)
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