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Context: Big Data

» Superabundance of visual data: images, videos, etc
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BBC: 2.4M videos Social media, 100M monitoring cameras
e.g. Facebook: 1B each day

» Obvious need for Visual Recognition

» Huge number of applications: mobile visual search, medical imaging,
robotics, autonomous driving, augmented reality,etc
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Visual Recognition

Challenge: filling the semantic gap

What we perceive vs
What a computer sees

> Illumination variations
> View-point variations
> Deformable objects
> intra-class variance

> etc
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Deep Learning (DL) & Visual Recognition

» Before DL:

handcrafted intermediate
representations for each domain

» Since DL:

Representation Learning
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@ Convolutionnal Neural Networks (ConvNets)
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Neural Networks

» The formal neuron

N

X;: inputs

w;, b: weights

f: activation function

y: output of the neuron

ghts  Summation and Bias

Activation

Output
» Stacking several formal neurons = Perceptron

=
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The Multi-Layer Perceptron (MLP)

» Perceptron: limited to linear decision boundaries

» Stacking layers of neural networks = more complex and rich
functions

hidden layer 1 hidden layer 2 hidden layer 3

input layer

» Basis of the “deep learning” field
» All parameters trained with backpropagation with class labels
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Convolutional Neural Networks (ConvNets)

» Scalability issue with Fully Connected Networks (MLP) + no local information!

Example: 1000x1000 image
1M hidden units
m) 10”12 parametersil

Input Image

100 hiden unit

Example: 1000x1000 image
10 hidden units

Firter size: 10x10
100M parameters

Renss CVRR'LY

# parametes: 100!
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Convolutional Neural Networks (ConvNets)

» Convolution on tensors, i.e. multidimensional arrays: T of size W x Hx D
» Convolution: C[T]=T', T' tensor of size W' x H' x K
» Each filter locally connected with shared weights (K number of filters)

» Elementary block: Convolution 4+ Non linearity (e.g. ReLU)+ pooling

S

Input Convolution Pooling

» Stacking several Blocks: intuitive hierarchical information extraction
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Deep Learning History

» 80’s: training Convolutionnal Neural Networks (CNN) with
back-propagation = postal code reading [LeCun et al., 1989]
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» 90's: golden age of kernel methods, NN = black box
» 2000's: BoW + SVM : state-of-the-art CV
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Deep Learning History

» Deep learning revival in 2012: outstanding success of ConvNets in
ImageNet [Krizhevsky et al., 2012]
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» Two main practical reasons:

1. Huge number of labeled images (10° images)
2. GPU implementation for training
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Deep Learning (DL) for Medical Image Diagnostic

» Deep ConvNets require large-scale annotated datasets

» BUT: Transferring Representations learned from ImageNet
Extract layer (fixed-size vector) = "Deep Features" (DF)

224x224x3 224 X224 %64

112x]112x 128

@ convolution+ReLU
max pooling

ﬁ] fully connected+ReLU

) softmax

» Now state-of-the-art for any visual recognition task [Azizpour et al., 2016]

» DF very robust to domain shifts, e.g. medical images
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Deep Learning (DL) for Medical Image Diagnostic

v

DL & ConvNets: performance boost for classification in medical images
» Transfer & fine-tuning (ImageNet), e.g. Polyp Detection [Tajbakhsh et al., 2016]

» ConvNets trained from scratch, e.g. Mammography
Classification [Kooi et al., 2017]

» ConvNets: winners of recent challenges based on deep learning: Mammography,
Melanoma Detection, etc

FROC Analysis

Sensitivity

—— Fine—tuned AlexNet:only fc8
021} —— Fine-tuned AlexNet:fc7-fc8
—— Fine-tuned AlexNet:conva-fcs|
01l —— Fine-tuned AlexNet:conv1-fc8|
~—— AlexNet scratch
: ; hand-crafted method
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False Positives Per Frame
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Deep Learning for Medical Image Semantic Segmentation

» Semantic segmentation: assigning a label to each image pixel
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Deep Learning for Medical Image Semantic Segmentation

» Deep Learning segmentation: classifying image regions around each pixel
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Deep Learning for Medical Image Semantic Segmentation

» Standard computer vision models models based on Fully Convolutional Networks
(FCN)

Conv 1x1

Input image Y -
P g 9 filters Prediction

mﬁmﬁ
g (32, 32, 2048)

V_ronkesem | (32,32, 9)

Feature vector

Resize
bilinear

(512,512, 9)

(512,512, 3)

» FCN base models for many state-of-the-art methods segmentation methods,
e.g. leading approach in Liver Tumor Segmentation (LiTS'17)
challenge [Li et al., 2017]
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Deep Learning for Medical Images

» Successful exportation of DL solutions boost performances... BUT
» ... Medical images very different from natural images:

» Discriminative pattern often tiny, e.g. Mammography 0.5% — 1.2% cancer pixel
[Akselrod-Ballin et al., 2017] vs > 50% ImageNet or > 30% VOC
» = Strong imbalance between @ and © (background) classes

Calcification(0.5%) Mass(1.2%)
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Deep Learning for Medical Images

» Successful exportation of DL solutions boost performances... BUT
» ... Medical images very different from natural images:

> 3D volumes vs 2D Images
» Hierarchical / nested detection or organs, e.g. tumor inside liver

Input

0 100 200 300 400 500
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Specific Deep Learning Architectures for Medical Images

Resolution loss through the network

Conv 1x1

Input image -
P 9 9 filters Prediction

(i

Feature vector

Resize\\

\_bilinear /

/oo (32,32,2048) (32,32, 9)

(512,512, 9)
(512,512, 3)

» Introduction of skip connections in U-Net [Ronneberger et al., 2015]
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Specific Deep Learning Architectures for Medical Images

Representation Learning with 3D Inputs?

» Use 3D convolution, e.g. V-Net [Milletari et al., 2016], 3D
U-Net [Cicek et al., 2016] or [Lu et al., 2017]
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Specific Training Schemes for Medical Images

Class imbalance

Use a specific loss function, e.g.

» Weighted cross entropy, U-Net [Ronneberger et al., 2015]

» Dice score, V-Net [Milletari et al., 2016] or
[Fidon et al., 2017, Sudre et al., 2017]

Truth T Predictions P
T, P, 2| InP |
S =
T, [T]+1P|
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Specific Training Schemes for Medical Images

Exploit prior knowledge between organs, e.g. tumors only in liver

» Cascaded FCNNSs for liver-tumor segmentation [Christ et al., 2016]
1
Cascaded FCN
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Conclusion

» Deep Learning & ConvNets: state-of-the-art solutions for medical image analysis
» Representation learning = better visual features
» Exporting solutions from computer vision: transfer for classification, RPN for
localization, FCN for segmentation, etc
» Some adaptation required: spatial resolution, class imbalance, 3D data, etc
» Other crucial steps for deploying DL solution in Healthcare: uncertainty estimate
and explainability = vanilla DL models poor at these tasks

» Some preliminary solutions for uncertainty [Gal and Ghahramani, 2016] and
explainability [Frosst and Hinton, 2017]

Is it a mammal?

yes, no
Do people commonly
keep it as a pet? Is it a kind of bird
yes yes
no no
a hamster a penguin
Is it a farm animal? Does it live
in the ocean?
yes, no yes no
4 . e

a goat an elephant a squid a spider
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Thank you for your attention!

Questions?
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