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MultiMedia group at LIP6/DAPA/MALIRE

© LIP6 lab in Paris
e ~ 150 permanent researchers, ~ 250 Phd students
@ DAPA department: Databases and Machine learning
e ~ 35 permanent researchers, ~ 50 Phd students
© MLIA team: MAchine Learning and Information Acess (P. Gallinari)
e ~ 10 permanent researchers, ~ 20 Phd students
Q@ MultiMedia group: Matthieu Cord
e 2 permanent researchers (M. Cord, N.Thome), ~ 10 Phd/Post-docs
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Outline

© Context
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Context

Context

@ Holy Grail of computer vision

o Filling the semantic gap: extremely challenging
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Semantic annotation of visual data
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Context

Semantic annotation

Handcrafted features

o Last decade : supremacy of robust local features: SIFT, STIP, etc

o Edge-based features
@ Embedded into a coding/pooling framework: BoW model

Feature

Classification

Feature .
traction codin ) Pooling
TInace b Local Visual Image Class
3¢ | descriptors codes signature | label
| I ~
K-Means Spatial Pyramids SVM
Clustering & Pooling Classifier
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Context

Semantic annotation

Deep Learning: Learning Representations from data

@ Image/Video : Convolutionnal Neural Networks (CNN)
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Used since the 80's g i =

@ @ deep models
e O difficult to train

ﬁ“:&:m mm"-: reflex nm’-':-:
e Many parameters, saiat Berened vamper| | " PP ston e inge

reqU|r.es'|ots of data @ 2012:Big data (10° images, 10° classes)
o Overfitting

@ Computational resources (GPU)
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Context

_____________ Con
Representation Learning

@ Importance of learning representation from data (transfer learning)

@ Supervised vs unsupervised learning
@ big data: huge number of unlabeled data, many (but fewer) labeled

data

BIG DATA

the capacity of a dvd
" (approx. 5 gb)

size of images
present in [Ej
in2013

entire written works of mankind in history in all
languages
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Outline

© Unsupervised Learning of Motion Features
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Dynamic Scene Classification

Context

@ Recognition of complex dynamic
cerrel] Caes @ Computer vision descriptors
such as HOF [MLS09], LDS
[DCW+03] not adapated to
such context [DLD+12]
e HOF: Constant
illumination constraints
o LDS: 1st order markovian
assumption

@ Our idea: unsupervised
learning of motion
descriptors

Stabilized Yupenn
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Unsupervised Learning of Motion Features

Dynamic Scene Classification

Unsupervised learning of motion descriptors

e Manifold Untangling
Contributions:

ko e @ Using Slow Feature Analysis
(SFA) for learning stable motion
descriptors

o Compact description (low
dimensional space)
@ Embedded into a
coding/pooling architecture

)

Vi

s |(

@ Outperforming state-of-the-art
performances in 2 challenging
dynamic scenes databases

avg. out value l [

avg. out value
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Unsupervised Learning of Motion Features

Slow Feature Analysis

o Measurements are noisy/chaotic, perceptions are stable [WS02,
BWOS5]

@ ldea: learning data
representations that " slow

primary sensory signal han IEVS}:C?p’dl;::‘S'“a“Dn down” the Signa|
A xj\’\-— @ Goal: slow component
S AN w,démﬂ capture relevant motion
VA A e, s _N\__ | features
e e

Source : http://www.scholarpedia.org/article/Slow_feature_analysis

[WS02] L. Wiskott and T. Sejnowski. Slow feature analysis: Unsupervised learning of invariances. Neural Computl, 2002.
[BWO5] P.Berkes and L. Wiskott . Slow feature analysis yields a rich repertoire of complex cell properties J.Vision, 2005.
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http://www.scholarpedia.org/article/Slow_feature_analysis

Unsupervised Learning of Motion Features

Slow Feature Analysis

o Input : D-dimensional temporal signal v(t) = [vi(t)va(t)...vp(t)] "

o Output : M-dimensional temporal signal y(t) = [y1(t)y2(t)..ym(t)]"

o Linear model y;(t) = Sjv(t), Vt et S € RP*M

=] 5
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Unsupervised Learning of Motion Features

Slow Feature Analysis

o yi(t) = Sjv(t), Vt et S € RP*M_ et us define:

o (y): temporal average of y
e y temporal derivative of y

@ SFA objective function:
min(2)e 1)

J
Under the constraints:
Q (yj): =0 (zero mean)
Q@ (y7): =1 (unit variance)
Q Vi </ : (yj,yy)t = 0 (decorrelation)

@ Can be rewritten as:

(WT):S = NS (2)
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Unsupervised Learning of Motion Features

Slow Feature Analysis

Formulation

o Can be rewritten as: (vv')

£S5
e vv' diagonalization

i = AjS;
o Keeping M eigenvectors associated with the smallest eigenvalues

=}
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Unsupervised Learning of Motion Features

Global Video Representation

SFA embedded into a coding/pooling scheme
( =\

V1 features SFA output
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Unsupervised Learning of Motion Features

Slow Feature Analysis

Connection SFA < LDA

i ' )
[
| *
N L
e L PR \W’d\f'\r\/Lﬂ" W"\r ‘JM\ N r,.
Credit [KM09] o ] )

@ Small variations ignored

e Dominant/stable components of the motion encoded

[KM09] Klampfl S, Maass W. Replacing supervised classification learning by Slow Feature Analysis in spiking neural networks,
Advances in Neural Information Processing Systems 22, 988-996, 2010. MIT Pres.
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Unsupervised Learning of Motion Features

Experiments

Classification results

ﬂ..ﬁ.. Table: Recognition Rate (%) on dynamic scene datasets
T

HOF | GIST | Chaos | SOE || Ours
Maryland | 17 38 36 41 60
Yupenn 59 56 20 74 85.5

Stabilized Yupenn

@ Based on V1 features

@ Both SFA learning and
coding/pooling scheme
improve performances

@ Very competitive wrt
state-of-the-art methods
(mono-feature results)
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© Supervised Metric Learning
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Supervised Metric Learning

Metric Learning

@ Learning a metric: important for many applications
@ Difference wrt standard classification contexts:

e Notion of similar/dissimilar # class labels

o Large scale:
o Adding new classes does not require to retrain the whole model
@ Zero-shot learning
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Supervised Metric Learning

Metric Learning

e Mahalanobis-like Metric Parametrization (matrix M SDP):
D(Zi, Zj) = (xi — %)) TM (x; — xj) = (M, x;x}) = (M, Cy)

@ Supervised metric learning: training set A with elements e

min uR(M) + > UM, e) (3)
eeA
@ R regularization term, (M, e) data-dependent, e.g. based on:
o Pairs: e = (Z;,Z;). e similar = DZ(Z;,Z;) < u, e dissimilar = DZ(Z;,Z;) > |
o Triplets: e = (Z;,Z;,Z,7), e.g. LMNN [WS09]: Dw(Z;,Z;") < Dm(Z;,Z7 ) + 1

Euclidean Mahalanobis
Metric Metric

[WS09] Weinberger, K. Q.; Saul L. K. Distance Metric Learning for Large Margin
Classification. Journal of Machine Learning Research 10: 207244, 2009.

: 4
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Supervised Metric Learning

Quadruplet-wise Metric Learning

Quadruplets

e Constraints involving up to 4 images: e = (Z;,Z;, Zx, Z;)
o DZ(Zk,T)) > DZ(Zi,Z)) + 6
@ Any pair or triplet constraint can be expressed with quadruplets

@ However, converse not true = only relative distances with
quadruplets

o More general/flexible constraints, useful in various applicative contexts

Optimization Scheme

Objective function:

min R(M) + C; 3~ ¢ e Eq. 4 with full matrix M: solved
RS geA using projected (PSD cone)
s.tVg € A: D3 (Zx, T)) > DH(Zi, Z;) + 6q — &q gradient descent
€20

@ Simplification for diagonal
matrices (~ ranking SVM)
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Supervised Metric Learning

Which contexts can benefit from QWise constraints ?

Application: Relative Attributes

@ Relative Attributes (RA) [PG11]:
Ranking two images wrt attributes
easier than binary labeling

@ Attributes: Mid-level concepts (higher
than low-level features, lower than

high-level categories
g ) Binary Attributes Relative Attributes

Young: Yes Young
£y Smiling: No
&% Young: Yes - ‘
k‘? Smiling: Yes ‘
Young: Yes

@ Smiling: Yes Smiling

) Young: No - Az =
Smiling: Yes géj'\’ bt V58
| Young: Yes
2| smiling: No

- Presence of smile +

Least smiling < ? ? < Most smiling

ol
ﬂb@hk.

Class (e) | Class (f) | Class (g) | Class (
[PG11] Devi Parikh, Kristen Grauman. Relative attributes, ICCV, pp.503-510, 2011.

-
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Supervised Metric Learning

Which contexts can benefit from QWise constraints ?

QWise constraints for learning Relative Attributes

— Presence of smile

+

Least smiling < ?

?

< Most smiling

o3| 0 | |
a B

Class (e) | Class (f)

Class (g)

Class (h)

4
Learn dissimilarity D such that:

o, &) < oced . ()
p( . &) < o(E . @

OSR Pubfig
Parikh’s code 71.3 4+ 1.9% 71.3 +2.0%
LMNN-G 70.7 + 1.9% 69.9 + 2.0%
LMNN 71.2 £+ 2.0% 71.5+ 1.6%
RA + LMNN 71.8 + 1.7% 74.2 £ 1.9%
Qwise 74.1 £2.1% 74.5+1.3%
Qwise + LMNN-G || 74.6 £ 1.7% | 76.5+1.2%
Qwise + LMNN 743+ 1.9% | 77.6 +2.0%

@ QWise constraints more robust to noise in
the labeling: second row, ranking should
rather be (g) < (f) ~ (h)

@ Learning M= L7L: each row of L is a
parameter vector for learning RA's

@ Experiments on OSR and PubFig datasets

o QWise outperforms baseline [PG11]
based on pairs
o Complementary to class labels used in

LMNN
i B R L

A B B B

nicolas.thome@Iip6.fr
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Supervised Metric Learning

Which contexts can benefit from QWise constraints ?

Hierarchical classification

@ Qwise to learn taxonomy:

e Rich annotations using a semantic taxonomy structure

e How to exploit complex relations from a class hierarchy as proposed in
[Vermal2]: Learn a metric such that images from close (sibling) classes
with respect to the class semantic hierarchy are more similar than
images from more distant classe

vehicle

sheeled vehicle

craft sell-propelied vehicle
vessol ancraft motor vehicle o Learning a fU” matriX M
ship it h. ar {. air bcycle  {ocometive  car ruck . .
{\ fm AW AYNNY . L @ Improved classification
%, o, %o o U, b, %, O, %, G 0% Y, }h, % 1,’&0/9
e T e % o e performances
% T T G Y 0

D 28) <D )

[Vermal2] N. Verma, D. Mahajan, S. Sellamanickam, and V. Nair. Learning hierarchical similarity metrics. In CVPR, 2012.

4
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Supervised Metric Learning

Which contexts can benefit from QWise constraints ?

Web archiving: change detection

@ Web crawling: useful to understand the change o ot e e e
behavior of websites over time r 7
e Significant changes between successive
versions of a same webpage = revisit the page

@ Focus on news websites

o | Advertisements | or | menus | not significant
° content significant

@ Qwise Constraints: l . _time
e Fully unsupervised, Ut+1 Vtt2
but temporal = s 7 -
information available S s ‘ =
; BoEn R = s
o Comparing RaEEa e e LT

screenshots of
successive versions D('Ut; Ut+1) < D(Utfla Ut+2)

v
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Supervised Metric Learning

Which contexts can benefit from QWise constraints ?

Web archiving: change detection

@ Evaluation: 50 days on CNN, NPR, BBC, NYT

@ GT annotation for change detection (news
updates) on 5 days

@ Features: GIST on a 10x10 grid
@ Metric: MAP on succ. Web pages

Site CNN NPR
Eval. APs | APp | MAP || APs | APp | MAP
Eucl 68.1 | 85.9 | 77.0 96.3 | 89.5 | 92.9
Dist. +0.6 | £0.6 | £0.5 | +0.2 | 40.5 | +0.3
LMNN [ 788 | 91.7 | 85.2 98.0 | 925 | 95.2
+1.9 | £1.7 | +1.8 || £0.6 | £1.1 | 4+0.9
Qwise | 82.7 | 94.6 | 88.6 || 98.6 | 94.3 | 96.5
4+4.1 | 1.8 | £2.9 || £0.2 | £0.6 | £0.4

New York Times BBC
APs [ APp | MAP || APs [ APp | MAP
69.8 | 79.5 | T46 911 | 76.7 | 83.9
40.9 | £0.4 | 0.5 || £0.3 | £0.6 | +£0.4
83.2 | 89.1 86.1 92,5 | 80.1 | 86.3
414 | £2.7 | £2.0 | £04 | £1.0 | £0.6
85.5 | 92.3 | 88.9 [ 92.8 | 79.3 | 86.1
+54 | +4.1 | +4.6 | £0.4 | +1.3 | £0.8
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Supervised Metric Learning

Conclusion

Representation Learning

@ Two Methods for learning representations:
e An unsupervised method for learning motion descriptors (SFA)
o A supervised metric learning scheme that can encompass exotic
(beyond binary labels) annotations and tackles various applications
@ Extension of our metric learning work on the regularization side =
explicit control over the rank of the learned matrix

@ Joint work with C. Thériault, M.T. Law, M. Cord and P. Pérez.

Publications
@ Slow Feature Analysis

C. Thériault, N. Thome and M. Cord, P. Pérez. Perceptual principles for video classification with Slow Feature Analysis, IEEE
Journal of Selected Topics in Signal Processing, p. 1-10, vol 99, April 2014

C. Thériault, N. Thome and M. Cord. Dynamic Scene Classification: Learning Motion Descriptors with Slow Features Analysis,
CVPR 2013

@ Metric learning
M.T. Law, N. Thome and M. Cord. Fantope Regularization in Metric Learning, CVPR 2014
M.T. Law, N. Thome and M. Cord. Quadruplet-wise Image Similarity Learning, ICCV 2013
M.T. Law, N. Thome, S. Gancarski and M. Cord. Structural and Visual Comparisons for Web Page Archiving, DocEng, 2012

|
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Supervised Metric Learning

Conclusion

o ANR
o Finished: ASAP (deep learning), ITOWNS, GeoPeuple
o VISIIR started on oct. 2013 on interative learning with eye-tracker
@ European SCAPE Project
@ Bilateral franco-brazilian CAPES-COFECUB. Collaborations::
o UNICAMP: E. Valle, R. Torres, J. Stolfi
@ R. Minetto Phd Thesis
e UFMG: A. de Albuquerque, S. Jamil,
o S. Avila Phd Thesis

Questions ?
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