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Deep Learning Success since 2010

▸ ILSVRC’12: the deep revolution
⇒ outstanding success of ConvNets [Krizhevsky et al., 2012]
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2012: the deep revolution

Deep ConvNet success at ILSVRC’12

Two main practical reasons:

1. Huge number of labeled images (106 images)
▸ Possible to train very large models without over-fitting
▸ Larger models enables to learn rich (semantic) features hierarchies

2. GPU implementation for training
▸ Relatively cheap and fast GPU
▸ Training time reduced to 1-2 weeks (up to 50x speed up)
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Representation Learning & Manifold Untangling

Raw data: Deep Learning representations:
very tangled manifold untangled manifold

▸ Deep Learning models gradually disentangle data manifold
▸ Deformations linearized: simple classifier in disentangled space!
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Deep Learning (DL) for small-scale Datasets
▸ Deep ConvNets require large-scale annotated datasets
▸ Do we need to collect ImageNet scale dataset for medical image analysis?
▸ OPTION: transferring representations learned from ImageNet:
extract layer (fixed-size vector) ⇒ "Deep Features" (DF)

▸ Now state-of-the-art for any visual recognition task [Azizpour et al., 2016]
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Deep Learning (DL) for Medical Image Analysis

▸ Deep Features very robust to domain shifts, e.g. medical images
▸ Transfer & fine-tuning (ImageNet), e.g. Polyp Detection [Tajbakhsh et al., 2016]
▸ ConvNets: winners of recent challenges based on deep learning: Mammography,
Melanoma Detection, etc

▸ Using ImageNet pre-training, e.g. Liver Tumor Segmentation (LiTS’17)
challenge [Li et al., 2017]
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Deep Learning (DL) for Medical Image Analysis

▸ Large-scale datasets in medical imaging: more the exception than the rule
▸ Data labeling expensive, especially fine-grained annotations (e.g. segmentation)

▸ Exacerbated in medical context: strong expertise required for labeling
▸ Solutions to tackle small-scale datasets with deep learning in this context:

▸ Leveraging coarse annotations to perform precise predictions
▸ Using (many) unlabelled data in addition to (few) labeled data

From [Xu et al., 2014] Few labeled data Many unlabeled
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Outline

1 Learning with Weak Supervision

2 Semi-Supervised Learning



Weakly Supervised Learning

▸ Using full (precise) annotation, e.g. BB or segmentation masks
▸ BUT: full annotations expensive [Bearman et al., 2016]

▸ Problem even more pronounced with medical images, e.g. segmentation often
prohibitive

▸ High resolution
▸ 3D data
▸ Videos

▸ ⇒ Training with weak supervision, for performing accurate predictions
▸ Ex: semantic segmentation from global labels
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Multiple Instance Learning (MIL)

▸ Multiple Instance Learning (MIL) [Dietterich et al., 1997]: old model for Weakly
Supervised Learning

▸ Model formulation: Example b composed of a bag of Nb instances:
b = {xh}h∈{1;Nb}

▸ b: image, {xh} image regions
▸ b: text document, {xh} paragraphs
▸ b: molecule, {xh} molecule parts
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Multiple Instance Learning (MIL)

▸ Example b composed of a bag of Nb instances: b = {xh}h∈{1;Nb}

▸ Each instance xh is described by a feature vector φ(b,h) ∈ Rd

▸ Ex: xh image region
▸ φ(b,h) ∈ Rd pixels
▸ φ(b,h) ∈ Rd handcrafted features (SIFT/HOG, etc)
▸ φ(b,h) ∈ Rd Deep features
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Multiple Instance Learning (MIL)

▸ Example b composed of a bag of Nb instances: b = {xh}h∈{1;Nb}

▸ MIL training formulation: A set a training N pairs (bi ,y∗i )
▸ bi = {xi,h}h∈{1;Nbi

}
i st example

▸ y∗i GT label, e.g. y∗i = ±1 for binary classification
▸ Weak supervision: y∗i provided at bag level

▸ MIL goal: performing predictions at instance level
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Multiple Instance Learning (MIL)

▸ MIL: Weak supervision: y∗i provided at bag level bi , not at instance level xi,h
▸ We need to pool (aggregate) over instances to train the model!

▸ Pooling over instance prediction scores:
▸ Define predictor at the instance level fw (φ(bi ,h)), ∀h ∈ {1;Nbi }

▸ Ex: binary classification: fw (φ(bi ,h)) ∈ R, sign [fw (φ(bi ,h))] ∈ {−1;1}
▸ Pool over prediction scores to get bag prediction: ŷi = g {fw (φ(bi ,h))},

e.g. g avg or max
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Multiple Instance Learning

▸ SVM-MIL algorithms, e.g. [Andrews et al., 2003]: binary classification
▸ Linear predictor on instances, i.e. fw (φ(bi ,h)) = ⟨w;φ(bi ,h)⟩
▸ Max pooling function g over instance scores ⇒ bag prediction:

fw(bi)=sign [max
h∈Nbi

⟨w, φ(bi ,h)⟩] (1)

▸ Training variants:
▸ LSVM: use max prediction for ⊕ and ⊖ bags
▸ MI-SVM: use max prediction for ⊕ but all ⊖ instances
▸ mi-SVM: use all ⊖ instances and relabel y∗i,h ∈ ±1 all ⊕ instances
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Multiple Instance Learning

▸ SVM-MIL algorithms: historically applied to part-based object
detection [Felzenszwalb et al., 2010] ⇒ Deformable Part Model (DPM)

▸ Adapted in the object detection context
▸ Supervision: bounding box
▸ Latent variable: position of objet "parts"
▸ Features for each part φ(bi ,h) : Handcrafted HoG

▸ PASCAL VOC "Lifetime Achievement" Prize in 2010
▸ PAMI Longuet-Higgins Prize at CVPR’18 (Retrospective Best Paper from
CVPR’08)
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Multiple Instance Learning and Deep Learning

▸ Using MIL model in the Deep Learning era: deep architecture for WSL

▸ Feature extractor ⇒ tensor of size k × l × d

▸ MIL notations: Nb = k × l instances (regions)
▸ Each instance h represented by deep features φ(b,h) ∈ Rd
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Multiple Instance Learning and Deep Learning

▸ Classification: projection to get a class
prediction for each instance

▸ zch = fwc (φ(bi ,h)), ∀h ∈ {1;Nb}, ∀c ∈ {1;C}
▸ k × l ×C tensor: Class Activation Maps (CAM)

▸ Pooling: class prediction aggregation to train model from global labels

ẑc = g [{zch}h∈{1;Nb}], ∀c ∈ {1;C}
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How to pool?

map zc

Max [Oquab et al., 2015]
y c = max

h
zch

Average (GAP) [Zhou et al., 2016]

y c = 1
N
∑
h

zch
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Average pooling limitation

▸ Classifying with all regions
▸ Not efficient for small objects: lots of “noisy” regions
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Max pooling limitation

Max pooling

y c = max
h

zch (2)

▸ Classifying only with the max scoring region

▸ Loss of contextual information
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Max pooling limitation

Max pooling

y c = max
h

zch (2)

▸ Classifying only with the max scoring region

▸ Loss of contextual information
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max+min pooling

▸ MANTRA [Durand et al., 2015]: max+min pooling function

y c = max
h

zch +min
h

zch (3)

▸ h+: presence of the class → high h+

▸ h−: localized evidence of the absence of class: negative evidence

street image x s(street) = 2 s(highway) = 0.7
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Generalize pooling function [Durand et al., 2019]

y c = 1
2β+h

log [ 1
∣H∣ ∑h∈H

eβ
+

h z
c
h ] + 1

2β−h
log [ 1

∣H∣ ∑h∈H
eβ

−

h z
c
h ] (4)

▸ Varying β+h , β
−
h ⇒ recovering pooling functions used in well-known probabilistic

and max-margin models
▸ Smoothly interpolate between these extreme cases

Model Pooling Function β+h β−h

HCRF [Quattoni et al., 2007] log-sum-exp 1 1
GAP [Zhou et al., 2016] average → 0 → 0
LSSVM [Yu and Joachims, 2009] max → +∞ → +∞
MANTRA [Durand et al., 2015] max+min → +∞ → -∞

Table: State-of-the-art WSL models with corresponding parameters.
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MIL for medical image analysis

▸ MIL directly adapted for detection of pattern from global label in medical
image/videos

▸ Specific lesion type in images
▸ Specific surgical gesture in videos, e.g. [Nwoye et al., 2019]
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MIL for medical image analysis

▸ Medical images: high resolution with small details
▸ Multi-resolution adaptation MIL [Quellec et al., 2012]
▸ Weighted average over scales
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MIL for medical image analysis

▸ MIL with constraints [Jia et al., 2017]
▸ Deep MIL (max pool) with FCN for Histopathology
▸ Multi-resolution: MIL loss applied at various conv layers
▸ Leveraging additional annotation, i.e. relative area size of the cancerous region
within image
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MIL for medical image analysis

▸ Integrating constraints from medical knowledge in deep MIL
objective [Zhu et al., 2017]

▸ Deep MIL (max pool) for lesion detection in mammography
▸ MIL loss including sparse prior constraint on lesion classification

▸ Lesion ∼ 2% of image size
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Outline

1 Learning with Weak Supervision

2 Semi-Supervised Learning



Semi Supervised Learning (SSL)

▸ Semi-supervised vs fully supervised vs unsupervised
▸ Some (few) labeled data, many unlabeled data

▸ Medical context: annotations costly ⇒ SSL useful

Credit: S. Jain
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Semi Supervised Learning (SSL)

Few labeled data Many unlabeled

▸ Two main strategies :
1. Adapting supervised objective with unlabelled data
2. Use alternative objective for unlabelled data, e.g. reconstruction
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SSL: Adapting supervised objective to unlabeled data

▸ Using unlabeled data structure, e.g. transductive SVMs [Joachims, 1999]

Fully supervised SSL
▸ OR re-labelling each unlabelled data in training set

▸ Same motivation as in mi-SVM
▸ Iterative unlabelled data predictions, e.g. Curriculum
learning [Bengio et al., 2009]
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Curriculum learning for SSL

1. Train a model with labelled data A
2. Until convergence:

▸ Seek a sub-set of "easy" unlabelled data Ue
▸ Label each element in Ue
▸ Retrain model on A ∪ Ue
▸ Ex for medical image analysis: SMILE [Petit et al., 2018]

Credit: J. Hui
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Semi Supervised Learning (SSL) with Unsupervised
Objective

▸ SSL: labelled and unlabelled data
▸ Simple option: combine supervised cost, e.g. classification, with
unsupervised objective

▸ Unsupervised objective: extract (deep) representations without labels
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Auto-Encoders

▸ z = f (Wx)
▸ x̂ = g(Vx)

▸ Often, V =Wt

▸ Auto-encoder objective function:
reconstruction

C =
N

∑
i=1

∣∣xi − x̂∣∣2

▸ If f = g = Id (linear auto-encoder): ∼
PCA:

C =
N

∑
i=1

∣∣xi −WtWx∣∣2
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Deep Auto-Encoders

▸ AE: limited to linear feature extraction
▸ Add fully connected layers ⇒ more complex representations
▸ Add convolutional / deconvolutional layers: adapted to local feature
extraction (images)
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Training deep Auto-Encoders

▸ How to train deep unsupervised objective?
▸ Fully connected deep AEs: layer-by layer tuning [Hinton et al., 2006]

▸ Deep conv AE: training whole architecture, i.e. all layers, jointly
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Training deep Auto-Encoders

▸ How to combine supervised and unsupervised objectives in SSL?
▸ Used unsupervised as pre-training, supervised as fine-tuning
▸ Used an hybrid objective function:

L = λcLc + λrLr

▸ Lc supervised cost, e.g. classification
▸ Lr unsupervised cost, e.g. reconstruction
▸ Joint training of both tasks
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Unsupervised Learning: Beyond Reconstruction
▸ Unsupervised objective: why reconstruction?
▸ Reconstruction: what if ultimate goal requires generalization to a set of
examples, e.g. classification?

▸ Deeper representation ⇔ more abstract ⇔ generalization ⇔ loss of information
▸ Classification & reconstruction: contradictory roles
▸ L = λcLc + λrLr with standard deep AE sub-optimal to disentangle discriminative
from non-discriminative information

▸ Two current alternatives to unsupervised learning:
1. Objective without reconstruction
2. Casting unsupervised training as classification
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Beyond Reconstruction: Ladder
Networks [Rasmus et al., 2015]

▸ "An autoencoder which can discard information"
▸ Layer above does not reconstruct layer below only with its activation
▸ Solution: Provide the details to learn only the abstract features

▸ Decoder has a noisy version of the input to reconstruct
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Beyond Reconstruction: HybridNet [Robert et al., 2018]
▸ Disentangling discriminative & complementary information for reconstruction

▸ Two-branch architecture vs single-branch for AE
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Beyond Reconstruction: HybridNet [Robert et al., 2018]

▸ HybridNet: training two-branch architecture

▸ Classification loss: standard cross-entropy ⇒ Lcls = CE (y∗, ŷ) = −log (ŷc∗)
▸ Stability loss: [Sajjadi et al., 2016, Laine and Aila, 2017, Tarvainen and Valpola, 2017]

▸ Lstability = ∣∣ŷ − z̃ ∣∣2, z̃ distorsion, e.g. exp mov avg [Laine and Aila, 2017]

▸ Reconstruction loss: Lrec = ∣∣x − x̂∣∣2 = ∣∣x − (x̂c + x̂u)∣∣2
▸ Branch balancing: back-prop only in one branch: max (∣∣x − x̂c ∣∣2; ∣∣x − x̂u ∣∣2)
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HybridNet [Robert et al., 2018]: Experiments

▸ All terms important
▸ Branch balancing ⇒ important for
branch cooperation

▸ Exploiting input data and
reconstruction

▸ Important gain compared to stability

▸ Semi-supervised experiments in
several datasets with ResNet-based
model

▸ Improve over stability & AE-based
baselines
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Hybrid Architectures for Medical Images

▸ SDNet (Spatial Decomposition) [Chartsias et al., 2018]
▸ SSL: Combining segmentation (cardiac MR) and reconstruction loss

▸ Motivation: Combining losses with a single model challenging

Large segmentation loss: poor reconstruction Large reconstruction loss: poor segmentation

▸ SDNet: 2-branch, segmentation (spatial) & global appearance layout
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SDNet [Chartsias et al., 2018]

▸ 2-brach architecture ⇒ help disentangling
▸ Nice latent space arithmetic properties

▸ Improvement for SSL compared e.g. U-Net [Ronneberger et al., 2015]
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Beyond Reconstruction: Self-Supervised Training

▸ Self-supervised training: unsupervised problem ⇒ supervised one
▸ Performing prediction on data, e.g.

▸ Relative position of regions
▸ Temporal prediction (next frames)

▸ "Auxiliary", "pretext" task
▸ Good auxiliary task requires solving high-level recognition ⇒ useful features
for the ultimate task

▸ Automatic labeling for auxiliary task ⇒ no manual supervision
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Self-Supervised Training: some auxiliary tasks

▸ Image colorization [Zhang et al., 2016]

▸ Predicting image orientation [Gidaris et al., 2018]
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Self-Supervised Training in Medical Imaging

▸ Auxiliary task: endoscopic video colorization [Ross et al., 2018] in (L,a,b) space
▸ cGAN approach: predict color (a,b) from luminance L

▸ Generator (U-Net): L→ (â, b̂)
▸ Discriminator (ResNet): L, a,b → real, L(â, b̂) → fake

▸ Target task: instrument segmentation
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Conclusion

▸ Deep models: huge volume of annotated data
▸ Annotation cost exacerbated in healthcare

▸ Learning from weak supervision (WSL)
▸ Very relevant for localized tasks (e.g. segmentation) in medical images:
high-resolution, 3D, videos, etc

▸ Pooling function (local prediction → global label) crucial
▸ Constraining models which medical prior knowledge useful

▸ Learning from (few) labeled data and (many) unlabeled supervision (SSL)
▸ Re-labeling unlabeled data, e.g. Curriculum-based approaches
▸ Beyond reconstruction with:

▸ Architectures for disentangling supervised from unsupervised signals
▸ Self-supervision
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