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Context
Big Data: Images & Videos everywhere

BBC: 2.4M videos Facebook: 140B images 100M monitoring cameras

• Obvious need to access, organize, search, or classify these data: Visual Recognition
• Huge number of applications: mobile visual search, robotics, autonomous driving,

augmented reality, medical imaging etc
• Leading track in major CV conferences during the last decade
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Visual Recognition: Perceiving Visual World

• Scene categorization

• Object localization

• Context & Attribute
recognition

• Rough 3D layout, depth
ordering

• Rich description of scene,
language, e.g. sentences
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Visual Recognition
Challenge: filling the semantic gap

What we perceive vs
What a computer sees

• Illumination variations
• View-point variations
• Deformable objects
• intra-class variance
• etc
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Visual Recognition History: Trends and methods in the last four decades

• 80’s: training Convolutionnal Neural Networks (CNN) with back-propagation ⇒
postal code reading [LBD+89]

• 90’s: golden age of kernel methods, NN = black box
• 2000’s: BoW + SVM : state-of-the-art CV
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Visual Recognition History: Trends and methods in the last four decades

• Deep learning revival: unsupervised learning (DBN) [HOT06]

• 2012: CNN outstanding success in ImageNet [KSH12]

Huge number of labeled images (106 images)
GPU implementation for training
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Deep Learning since 2012
More & more data (Facebook 109 images / day), larger & larger networks
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Deep Learning since 2012
Transferring Representations learned from ImageNet

• Extract layer ⇒ fixed-size vector: "Deep Features" (DF)
• Now state-of-the-art for any visual recognition task
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Resource for the community: MatConvNet

MatConvNet: MatLab toolbox for CNN processing
• Developed by Oxford team (Vedaldi, Lenc), http://www.vlfeat.org/matconvnet/
• Using it for processing & training (chain) feedforward CNNs

Efficient CNN implementation far from trivial

Credits: Vedaldi, Zisserman
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Resource for the community: MatConvNet

Forward run of a network
• Wide range of available pre-trained networks: VGG, Googlenet, ResNet

• Fast execution : easy-to-use GPU implementation

• Input: image, output: one ImageNet class

run matlab/vl_setupnn
% Load the (online available) CNN
net = load(’imagenet-vgg-m.mat’);

% Load and normalize image
im = single(imread(’peppers.png’));
im = imresize(im, net.meta.normalization.imageSize(1:2));
im = im-net.meta.normalization.averageImage;
% Run the CNN

res = vl_simplenn(net, im);

% Scores for the 1,000 ImageNet classes
scores = squeeze(gather(res(end).x)) ;
[bestScore , bestClass] = max(scores) ;

Nicolas Thome Deep Learning for Visual Recognition 12/ 1



Resource for the community: MatConvNet

• Transfer: CNN as a feature extractor

% Load the (online available) CNN
% Load and normalize image, Run the CNN
res = vl_simplenn(net, im);

% Extract features
features = squeeze(gather(res(20).x)) ;
% Learn / test an SVM on these features

• Design your own network: architecture

% Convolution
net.layers{1} = struct(’type’, ’conv’,
’weights’, {0.01*randn(5,5,1,20,’single’),
zeros(1,20,’single’)}, ’stride’,1,’pad’,0);

Nicolas Thome Deep Learning for Visual Recognition 13/ 1



Resource for the community: MatConvNet
• Design your own block: custom layer functions

Custom layer: one Matlab file with forward/backward functions

function out = vl_negReLU(x,dzdy,opts)
if nargin <= 1 || isempty(dzdy)
out = x.*(x>0) + 0.2*x.*(x<0);

else
out = dzdy .* ((x>0) + 0.2.*(x<0));

end

• Training a CNN model

Efficient implementation, Optimized for GPU
Use GPU = boolean option

opts.gpus = 1;
stats = cnn_train(net, imdb, @get_batch_function, opts);
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Resource for the community: MatConvNet
MatConvNet: a use case [CTC+15]

• Context: fine-grained recognition on low-resolution images
Varying image size
6667 training images

• Evaluated frameworks:
Pre-trained deep features + SVM
Custom network learned from scratch on small images

Method Accuracy

CNNM (1st fc) 32.7%
CNNM (2nd fc) 27.2%

Our LRCNN 44.8%
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Deep Learning since 2012
Breakthroughs with CNNs

• Deep learning, DF: very powerful intermediate representations
Semantic relationship wrt various categories, e.g. 103 ImageNet
Open the way to unreachable applications: image captioning, visual question
answering, image generation, etc
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Breakthroughs with CNNs

Modern data & annotations
• Privileged information (PI) = additional example-specific information only available
during training

• Goal: benefit from this additional data to improve the classifier
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Breakthroughs with CNNs
Privileged information (PI)

• SVM+ [VV09] / Margin Transfer [SQL14]: (PI) ⇔ difficulty level

• Curriculum learning [BLCW09]: start easy / increase difficulty

⇒ Our deep+: end-to-end training of a deep CNN with (PI)
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Open Issues in Deep Learning for Visual Recognition
• Deep CNNs: breakthrough, large scale data and Transfer ⇒ solved problem ?
• Limited invariance (conv layers): OK for centered objects, KO for "natural" photos

• Weakly Supervised Learning of deep CNNs [DTC16, DTC15], region localization
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Open Issues in Deep Learning for Visual Recognition

• Architecture, compression, learning formulation (unsupervised training)
• Formal understanding: model [BM13], optimization [HV15, DPG+14], over-fitting

Thank you for your attention !

• Sorbonne Universités - LIP6, MLIA Team (P. Gallinari)
• Machine learning for vision: M. Cord, N. Thome, PhD Students:

M. Chevalier: Learning Using Privileged Information (LUPI)
T. Durand: Structured prediction and Weakly Supervised Learning
X. Wang: Visual Recognition with Eye-Tracker
M. Blot: Deep Architectures for Large-Scale Recognition
M. Carvalho: Deep Networks Compression

T. Durand, N. Thome, and M. Cord. Weakly Supervised Learning of Deep CNNs, CVPR 2016.
M. Chevalier et. al. LR-CNN For Fine-grained Classification with Varying Resolution, ICIP 2015.
T. Durand, N. Thome, and M. Cord. Minimum Maximum Latent Structural SVM for Image Classification and Ranking, ICCV 2015.
X. Wang, N. Thome and M. Cord. Gaze Latent Support Vector Machine for Image Classification, ICIP 2016.
M. Blot, N. Thome and M. Cord. MaxMin convolutional neural networks for image classification, ICIP 2016.
M. Carvalho, M. Cord, N. Thome, S. Avila and E. Valle. Deep Neural Networks Under Stress, ICIP 2016.
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