Deep time series forecasting with prior knowledge

Nicolas Thome - Prof. at Sorbonne University ISIR Lab, Machine Learning Team (MLIA)

Time series and transfer learning workshop

https://gtsbrain-paris.github.io/events.html

19th of October, Paris

イロト イポト イヨト イヨト

Outline

- Prior knowledge in training losses
- 3 Physical knowledge in prediction models

Spatio-temporal forecasting

Future prediction of time series with complex temporal and potentially spatial correlations

Crucial for many applications: weather and climate science, healthcare, robotics, finance, etc

X Sta

weather forecasts

g medical prognosis , *e.g.* COVID evolution

robot visual navigation

Spatio-temporal forecasting & big data

 Big data: superabundance of data: times series (sensor measurements), images (fisheye, satellite), spatio-temporal data (weather forecasts), etc

Obvious need for Artificial Intelligence with these data

(日) (周) (日) (日) (日)

Solar irradiance forecasting

V. Le Guen's PhD ('18-'21): Industrial application at EDF

Solar irradiance forecasting with sky images

Data: > 7 million images and measured solar irradiance every 10s

Goal: predict future solar irradiance values (0-20min) given previous fisheye images

・ロト ・ 同ト ・ ヨト ・ ヨト

Machine Learning and Deep Learning

Goals:

- 1. Predict solar irradiance from fisheye image: perception, works well
- 2. Predict future irradiance (0-20min) given past images: more challenging

Challenges in solar energy forecasting

Pure data-driven forecasts struggle to properly extrapolate:

- lag behind the ground truth
- do not capture sharp patterns (blurry predicted trajectory)

Figure: 5min solar irradiance forescasting, from [13] = 1 + 1 = 1000nicolas.thome@sorbonne-universite.fr - Priors in deep time series forecasting

How to properly exploit prior knowledge to improve Machine Learning models?

- 1. Prior knowledge in training loss function
- 2. Physical knowledge in forecasting model

Outline

- Prior knowledge in training losses
- Opposible Physical knowledge in prediction models

Time series forecasting

Long horizon forecasts, i.e. multi-step setting

Non-stationary time series, that can present abrupt changes
 Important in many contexts, e.g. electricity (anticipate future drops of production), etc...

nicolas.thome@sorbonne-universite.fr - Priors in deep time series forecasting

イロト イポト イヨト イヨト

Traditional methods:

- Auto-Regressive models (ARMA, ARIMA,...) [1]
- State Space Models (Exponential smoothing, ...) [9]
- Assumption: stationary time series

Deep learning models:

- Seq2Seq Recurrent Neural Networks [19]
- Complex architectures for multivariate forecasting: attention mechanisms, tensor factorizations [18]
- Deep State Space Models for modeling uncertainty [15]
- \ldots but those models trained with the Mean Squared Error (MSE) !

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ ○ ◆ ○ ◆ ○ ◆ ○ ◆

Motivation: MSE Loss Limitation

 MSE loss typically used for training forecasting problems not adapted to judge the quality of a forecast.

Specific Metric for time series forecasting

MAE=0.144 Forecast series Beal series TDI=0% kWh 5000 20 30 60 70 Hours 5000 Aligned test 1
 Real series TDI=1.96% KWh 5000 5000 20 60 70 Hour Aligned test 2
Beal series kWh 5000 5000 20 30 60 70 Hour

• • • • • • • • • • • • •

- Change Point Detection [2, 10]
- Hausdorff distance [8, 16]
- Ramp score [6, 17]
- Time Distrosion Index (TDI) [7]

... but not differentiable! How to train deep models?

DILATE (DIstortion Loss with shApe and TimE)

- Training dataset: N input time series $\mathcal{A} = \{\mathbf{x}_i\}_{i \in \{1:N\}}$
 - $\mathbf{x}_i = (\mathbf{x}_i^1, ..., \mathbf{x}_i^n) \in \mathbb{R}^{p \times n}$ input of length n
 - $\mathbf{y}_i^* = (\mathbf{y}_i^{* 1}, ..., \mathbf{y}_i^{* k})$ GT output of length k
 - $\hat{\mathbf{y}}_i = (\hat{\mathbf{y}}_i^1, ..., \hat{\mathbf{y}}_i^k) \in \mathbb{R}^{d \times k}$ predicted output of length k

$$\mathcal{L}_{DILATE}(\hat{\mathbf{y}}_{i}, \overset{*}{\mathbf{y}}_{i}) = \alpha \ \mathcal{L}_{shape}(\hat{\mathbf{y}}_{i}, \overset{*}{\mathbf{y}}_{i}) + (1 - \alpha) \ \mathcal{L}_{temporal}(\hat{\mathbf{y}}_{i}, \overset{*}{\mathbf{y}}_{i})$$
(1)

DILATE - shape loss

Based on dynamic time warping (DTW) that computes the optimal alignment A* between 2 time series:

$$DTW(\hat{\mathbf{y}}_{i}, \overset{*}{\mathbf{y}}_{i}) = \min_{\mathbf{A} \in \mathcal{A}_{k,k}} \left\langle \mathbf{A}, \mathbf{\Delta}(\hat{\mathbf{y}}_{i}, \overset{*}{\mathbf{y}}_{i}) \right\rangle$$

Soft-DTW [4]: soft minimum to make DTW differentiable

$$\mathcal{L}_{shape}(\hat{\mathbf{y}}_{i}, \overset{*}{\mathbf{y}}_{i}) = DTW_{\gamma}(\hat{\mathbf{y}}_{i}, \overset{*}{\mathbf{y}}_{i}) \coloneqq -\gamma \log \left(\sum_{\mathbf{A} \in \mathcal{A}_{n,m}} \exp \left(-\frac{\left(\mathbf{A}, \mathbf{\Delta}(\hat{\mathbf{y}}_{i}, \overset{*}{\mathbf{y}}_{i}) \right)}{\gamma} \right) \right)$$

DILATE - temporal loss

14/35

 Quantify the deviation of optimal path A* from the main diagonal with the Time Distortion Index (TDI) [7]

• We introduce a smooth relaxation of the TDI:

$$\mathcal{L}_{temporal}(\hat{\mathbf{y}}_{i}, \overset{*}{\mathbf{y}}_{i}) \coloneqq \left\langle \mathbf{A}_{\gamma}^{*}, \mathbf{\Omega} \right\rangle = \frac{1}{Z} \sum_{\mathbf{A} \in \mathcal{A}_{n,m}} \left\langle \mathbf{A}, \mathbf{\Omega} \right\rangle \exp^{-\frac{\left\langle \mathbf{A}, \mathbf{\Delta}(\hat{\mathbf{y}}_{i}, \overset{*}{\mathbf{y}}_{i}) \right\rangle}{\gamma}}$$

DILATE experiments

- Experimental setup: evaluate the k-step future trajectories
- Non stationary datasets: Synthetic, ECG5000, Traffic, ETTH1 (horizon 96)
- DILATE training: equivalent results evaluated on MSE, better results evaluated on shape and time metrics

Qualitative forecasting results

Extension to probabilistic forecasting

- Goal: produce a small set of sharp and diverse future trajectories
- STRIPE: Shape and Time diverRsIty in Probabilistic forEcasting

- 1. Train a quality loss for deterministic forecasting (encoder, decoder)
- 2. Diversification with a determinantal point processes (DPP) with shape and time criteria (encoder, decoder frozen)

・ロト ・日ト ・ヨト

SRTIPE diversification: DPP

• Train STRIPE diversifier with a DPP loss $\mathcal{L}_{diversity}(\mathcal{Y}; \mathbf{K})$

(日) (周) (日) (日) (日)

DPP: kernel diversification ⇒ shape and time kernels!

SRTIPE diversification: DPP

Deriving valid PSD kernels from shape and time criteria

criterion	differentiable loss	PSD sim. kernel
shape	$DTW^{oldsymbol{\Delta}}_{\gamma}(\mathbf{y},\mathbf{z})$	$e^{-\operatorname{DTW}^{\mathbf{\Delta}}_{\gamma}(\mathbf{y},\mathbf{z})/\gamma}$
time	$TDl_{\gamma}^{oldsymbol{\Delta}, \Omega_{ ext{dissim}}}(\mathbf{y}, \mathbf{z})$	$\frac{e^{-DTW_{\gamma}^{\boldsymbol{\Delta}}(\mathbf{y},\mathbf{z})/\gamma}}{\timesTDI_{\gamma}^{\boldsymbol{\Delta},\boldsymbol{\Omega}_{\mathrm{sim}}}(\mathbf{y},\mathbf{z})}$

э

STRIPE results

▶ Take home message: large increase in diversity without scarifying quality

	$H_{quality}(\cdot) (\downarrow)$			H	$H_{diversity}(\cdot)$ (\downarrow)			$F1$ score (\downarrow)		
Methods	DTW	TDI	DILATE	DTW	TDI	DILATE	DTW	TDI	DILATE	
DeepAR [15]	42.9 ± 6.6	16.6 ± 7.6	33.5 ± 6.0	23.9 ± 3.5	12.8 ± 2.5	22.7 ± 2.2	30.7	14.5	27.1	62.4 ± 9.9
cVAÊ DILATE	11.7 ± 1.5	9.4 ± 2.2	14.2 ± 1.5	18.8 ± 1.3	48.6 ± 2.2	33.9 ± 3.9	14.4	15.7	20.0	62.2 ± 4.2
variety loss [61] DILATE	15.6 ± 3.4	10.2 ± 1.1	16.8 ± 0.9	22.7 ± 4.1	37.7 ± 4.9	30.8 ± 1.0	18.5	16.1	21.7	62.6 ± 3.0
entropy reg. [62] DILATE	13.8 ± 3.1	8.8 ± 2.2	15.0 ± 1.6	20.4 ± 2.8	42.0 ± 7.8	32.6 ± 2.3	16.5	14.5	20.5	62.4 ± 3.9
Diverse DPP [1] DILATE	12.9 ± 1.2	9.8 ± 2.1	15.1 ± 1.5	18.6 ± 1.6	42.8 ± 10.1	31.3 ± 5.7	15.2	15.9	20.4	60.7 ± 1.6
GDPP [68] DILATE	14.8 ± 2.9	11.7 ± 8.4	14.4 ± 2.1	20.8 ± 2.4	25.2 ± 7.2	23.9 ± 4.5	17.3	15.9	17.9	63.4 ± 6.4
STRIPE [25]	16.8 ± 0.5	6.7 ± 0.4	15.4 ± 0.5	16.1 ± 1.1	13.2 ± 1.7	17.7 ± 0.6	16.4	8.8	16.5	60.5 ± 0.4
STRIPE++	13.5 ± 0.5	9.2 ± 0.5	15.0 ± 0.3	$\textbf{12.9} \pm \textbf{0.3}$	16.3 ± 1.2	17.9 ± 0.6	13.2	11.7	16.3	$\textbf{48.6} \pm \textbf{0.6}$

Qualitative predictions:

Application to autonomous driving

DIVA: DIVerse trajectory prediction with Admissibility constraints

Layout loss for fulfilling domain contraints (predictions in drivable area)

- Prior knowledge in training losses
- 3 Physical knowledge in prediction models

Related work: incorporating physical knowledge in ML

Hybrid models combining MB and ML (gray box)

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Focus: simplified physical models

Physical models: often approximations of real-world dynamics

- A complete description of a complex natural phenomenon is out of reach, *e.g.* climate, earth modelling
- Approximations are made to make the numerical resolution tractable, e.g. reduced-order models, resolution on coarse meshes

(日) (周) (王) (王) (王)

Motivation: data-driven vs. simplified physical models

Damped pendulum:
$$\frac{d^2\theta}{dt^2} + \omega_0^2 \sin \theta + \lambda \frac{d\theta}{dt} = 0$$

- Data-driven models struggle to extrapolate complex dynamics, in particular in data-scarce contexts
- Physical models fail to extrapolate when they are misspecified: forecasting & parameter identification failure

⇒ Augmenting PHYsical models for ideNtIfying and forecasTing complex dYnamic (APHYNITY)

・ロト ・ 同ト ・ ヨト ・ ヨト

nicolas.thome@sorbonne-universite.fr - Priors in deep time series forecasting

24/35

APHYNITY

- ^dX_t/dt = F(X_t), X_t ∈ ℝ^d (vector) or X_t(x) ∈ ℝ^d, x ∈ Ω ⊂ ℝ^k (vector field)

 F ∈ ℱ normed vector space, F_p ∈ ℱ_p ⊂ ℱ physical model (ODE/PDE)
- Augment approximate physical model F_p with data-driven $F_a \in \mathcal{F}$:

$$\frac{dX_t}{dt} = F(X_t) = F_p + F_a$$

- However, decomposition $F = F_p + F_a$ in general not unique
- APHYNITY:

$$\min_{F_p \in \mathcal{F}_p, F_a \in \mathcal{F}} \|F_a\| \text{ subject to } F = (F_p + F_a) (2)$$

 If \$\mathcal{F}_p\$ Chebyshev set¹, decomposition in Eq (2) exists and is unique (metric projection onto \$\mathcal{F}_p\$).

Intuition: min $||F_a|| \Rightarrow$ augmentation only models information that cannot be captured by the physical prior F_p

^aIn finite-dim space, closed convex sets

APHYNITY training

▶ Dataset of observed trajectories: $\mathcal{D} = \{X : [0,T] \rightarrow \mathcal{F} \mid \forall t \in [0,T], dX_t/dt = F(X_t)\}$

APHYNITY objective:

 $\min_{F_p \in \mathcal{F}_p, F_a \in \mathcal{F}} \quad \|F_a\| \quad \text{subject to} \quad \forall X \in \mathcal{D}, \forall t, \frac{dX_t}{dt} = (F_p + F_a)(X_t)$

• Parametrized models $F_p^{ heta_p}$ ($heta_p$ physical parameters), $F_a^{ heta_a}$ ($heta_a$ deep NN)

APHYNITY - quantitative results

Experiments on 3 classes of physical phenomena:

- **•** Damped pendulum: $\frac{d^2\theta}{dt^2} + \omega_0^2 \sin \theta + \lambda \frac{d\theta}{dt} = 0$
 - Simplified \mathcal{F}_p : Hamiltonian (energy conservation), ODE without λ
- **Reaction-diffusion:** $\frac{\partial u}{\partial t} = a\Delta u + R_u(u,v;k)$, $\frac{\partial v}{\partial t} = b\Delta v + R_v(u,v)$
 - Reaction terms: $R_u(u,v;k) = u u^3 k v, R_v(u,v) = u v$
 - Simplified \mathcal{F}_p : PDE without reaction
- Damped wave: $\frac{\partial^2 w}{\partial t^2} c^2 \Delta w + k \frac{\partial w}{\partial t} = 0$
 - Simplified *F_p*: PDE without damping

All \mathcal{F}_p 's are closed and convex in $\mathcal{F} \Rightarrow$ Chebyshev

Experiments: APHYNITY results

Dataset		Method	log MSE	%Err param.	$ F_{a} ^{2}$
	Data- driven	Neural ODE PredRNN++	-3.76 ± 0.02 -4.60 ± 0.01	n/a n/a	n/a n/a
(a) Reaction-	Incomplete physics	Param PDE (a, b) APHYNITY Param PDE (a, b)	-1.26±0.02 -5.10±0.21	67.6 2.3	n/a 67
diffusion	Complete	Param PDE (a, b, k) APHYNITY Param PDE (a, b, k)	-9.34±0.20 -9.35±0.02	0.17 0.096	n/a 1.5e-6
	physics	True PDE APHYNITY True PDE	-8.81±0.05 -9.17±0.02	n/a n/a	n/a 1.4e-7
	Data-driven	Neural ODE	-2.51 ± 0.29	n/a	n/a
(b)	Incomplete Param PDE (c) physics APHYNITY Param PDE (c)		0.51±0.07 -4.64±0.25	10.4 0.31	n/a 71.
Wave equation	Complete	Param PDE (c, k) APHYNITY Param PDE (c, k)	-4.68±0.55 -6.09±0.28	1.38 0.70	n/a 4.54
		True PDE APHYNITY True PDE	-4.66±0.30 -5.24±0.45	n/a n/a	n/a 0.14
	Data-driven	Neural ODE	$-2.84{\pm}0.70$	n/a	n/a
	Incomplete physics	Hamiltonian APHYNITY Hamiltonian	-0.35±0.10 -3.97±1.20	n/a n/a	n/a 623
(c) Damped pendulum –		Param ODE (ω_0) Deep Galerkin Method (ω_0) APHYNITY Param ODE (ω_0)	-0.14±0.10 -3.10±0.40 - 7.86±0.60	13.2 22.1 4.0	n/a n/a 132
	Complete physics	Param ODE (ω_0, α) Deep Galerkin Method (ω_0, α) APHYNITY Param ODE (ω_0, α)	-8.28±0.40 -3.14±0.40 -8.31±0.30	0.45 7.1 0.39	n/a n/a 8.5
		APHYNITY True ODE	-8.58±0.20 -8.44±0.20	n/a n/a	n/a 2.3

- Better forecasting performances
- Better physical parameter identification

イロト イポト イヨト イヨト 二日

• $||F_a||^2 \sim \text{level of } F_p$ approximation

APHYNITY - qualitative results

(a) Param PDE (a, b), diffusion-only (b) APHYNITY Param PDE (a, b) (c) Ground

(c) Ground truth simulation

Figure 3: Comparison of predictions of two components u (top) and v (bottom) of the reactiondiffusion system. Note that t = 4 is largely beyond the dataset horizon (t = 2.5).

Figure 4: Comparison between the prediction of APHYNITY when c is estimated and Neural ODE for the damped wave equation. Note that t + 32 is already beyond the dataset horizon (t + 25), showing the consistency of APHYNITY method.

Application to Video Prediction: PhyDNet (CVPR'20)

Application to solar energy forecasting (CVPR'20 workshop)

- Short-term (<20min) solar irradiance forecasting with fisheye images
- Improved PhyDNet model with separate encoders/decoders & min $||F_a||^2$

Application to optical flow

- Deep learning models: trained with complex curriculum, *i.e.* synthetic data (Chairs, Things, Sintel), real data (HD1K, Kitti)
- Traditional methods: based on brightness consistency (BC) assumption: $\frac{\partial I}{\partial t}(t, \mathbf{x}) + \mathbf{w}(t, \mathbf{x}) \cdot \nabla I(t, \mathbf{x}) = 0$
 - BUT: BC violated in several usual conditions

Image t+1

nicolas.thome@sorbonne-universite.fr - Priors in deep time series forecasting

900

COMBO model for optical flow (ECCV'22)

- ► COMBO: complementing BC with deep NNs for accurate flow prediction
- ► GT flow \mathbf{w}^* decomposition: physical flow \mathbf{w}_p^* , augmentation flow \mathbf{w}_a^* , uncertainty map α^* : $\min_{\mathbf{w}_p, \mathbf{w}_a} \|(\mathbf{w}_a, \mathbf{w}_p)\|$ subject to:

(3)

33/ 35

Hybrid models for computation fluid dynamics (CFD)

• Learning dynamics for 1D CFD equations (Burgers):

- Goal for the proof of concept:
 - Good prediction performances (~ full simulation), good physical estimation (ν)
 - Speeding up computation (non linear system inversion for learned terms)
 - Improved training with H₁ loss

Thank your for your attention!

Questions?

Loss function regularization

- T-PAMI'23 paper
- DILATE: NeurIPS'19, GitHub: https://github.com/vincent-leguen/DILATE
- STRIPE: NeurIPS'20, GitHub: https://github.com/vincent-leguen/STRIPE
- DIVA:, ICPR'22

Augmented physical models:

- PhyDNet: CVPR'20, CVPR'20 workshop GitHub: https://github.com/vincent-leguen/PhyDNet
- ► <u>APHYNITY:</u> ICLR'21, GitHub: https://github.com/yuan-yin/aphynity
- COMBO: ECCV'22, GitHub: https://github.com/vincent-leguen/COMBO

References I

- George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time series analysis: forecasting and control. John Wiley & Sons, 2015.
- [2] Wei-Cheng Chang, Chun-Liang Li, Yiming Yang, and Barnabás Póczos. Kernel change-point detection with auxiliary deep generative models. In International Conference on Learning Representations (ICLR), 2019.
- [3] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential equations. In Advances in neural information processing systems (NeurIPS), pages 6571–6583, 2018.
- [4] Marco Cuturi and Mathieu Blondel. Soft-dtw: a differentiable loss function for time-series. In International Conference on Machine Learning (ICML), pages 894–903, 2017.
- [5] Emmanuel de Bezenac, Arthur Pajot, and Patrick Gallinari. Deep learning for physical processes: Incorporating prior cientific knowledge. International Conference on Learning Representations (ICLR), 2018.
- [6] Anthony Florita, Bri-Mathias Hodge, and Kirsten Orwig. Identifying wind and solar ramping events.
 In 2013 IEEE Green Technologies Conference (GreenTech), pages 147–152. IEEE, 2013.
- [7] Laura Frías-Paredes, Fermín Mallor, Martín Gastón-Romeo, and Teresa León. Assessing energy forecasting inaccuracy by simultaneously considering temporal and absolute errors. Energy Conversion and Management, 142:533-546, 2017.

- [8] Damien Garreau, Sylvain Arlot, et al. Consistent change-point detection with kernels. Electronic Journal of Statistics, 12(2):4440–4486, 2018.
- [9] Rob Hyndman, Anne B Koehler, J Keith Ord, and Ralph D Snyder. Forecasting with exponential smoothing: the state space approach. Springer Science & Business Media, 2008.

References II

- [10] Shuang Li, Yao Xie, Hanjun Dai, and Le Song. M-statistic for kernel change-point detection. In Advances in Neural Information Processing Systems (NIPS), pages 3366-3374, 2015.
- [11] Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. PDE-Net: Learning PDEs from data. In International Conference on Machine Learning, pages 3214-3222, 2018.
- [12] Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-BEATS: Neural basis expansion analysis for interpretable time series forecasting. International Conference on Learning Representations (ICLR), 2020.
- [13] Quentin Paletta, Guillaume Arbod, and Joan Lasenby. Benchmarking of deep learning irradiance forecasting models from sky images-an in-depth analysis. Solar Energy, 2021.
- [14] Maziar Raissi. Deep hidden physics models: Deep learning of nonlinear partial differential equations. The Journal of Machine Learning Research, 19(1):932–955, 2018.
- [15] Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang, and Tim Januschowski.
 Deep state space models for time series forecasting.
 In Advances in neural information processing systems (NeurIPS), pages 7785–7794, 2018.
- [16] Charles Truong, Laurent Oudre, and Nicolas Vayatis. Supervised kernel change point detection with partial annotations. In International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 3147–3151. IEEE, 2019.
- [17] Loïc Vallance, Bruno Charbonnier, Nicolas Paul, Stéphanie Dubost, and Philippe Blanc. Towards a standardized procedure to assess solar forecast accuracy: A new ramp and time alignment metric. Solar Energy, 150:408-422, 2017.

- [18] Hsiang-Fu Yu, Nikhil Rao, and Inderjit S Dhillon. Temporal regularized matrix factorization for high-dimensional time series prediction. In Advances in neural information processing systems (NIPS), pages 847–855, 2016.
- [19] Rose Yu, Stephan Zheng, and Yan Liu. Learning chaotic dynamics using tensor recurrent neural networks. In ICML Workshop on Deep Structured Prediction, volume 17, 2017.
- [20] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. AAAI, 2021.

Training deep forecasting models with DILATE

- Direct computation of \mathcal{L}_{shape} and $\mathcal{L}_{temporal}$ intractable $(|\mathcal{A}_{k,k}| = O(exp(k^2)))$
- ▶ Solution: dynamic programming ⇒ custom forward/backward implementation

Variants of DILATE

DILATE-t: "tangled" variant of DILATE

$$\begin{array}{c|c} \mathsf{DILATE} & \min_{\gamma} \langle \mathbf{A}, \boldsymbol{\Delta} \rangle + \langle A^*, \boldsymbol{\Omega} \rangle \\ \hline \\ \mathsf{DILATE-t} & \min_{A} \langle \mathbf{A}, \boldsymbol{\Delta} + \boldsymbol{\Omega} \rangle \end{array}$$

- \blacktriangleright DILATE-t: penalization matrix Ω inside the minimization of DTW
 - Shape and temporal term mixed during minimization
- DILATE-t subsumes well-known temporally-constrained DTW methods:

DILATE experiments

		Fully con	nected network	(MLP)	Recurrent neural network (Seq2Seq)			
Dataset	Eval	MSE	DTW_{γ}	DILATE (ours)	MSE	DTW_{γ}	DILATE (ours)	
	MSE	1.65 ± 0.14	4.82 ± 0.40	1.67 ± 0.184	1.10 ± 0.17	2.31 ± 0.45	1.21 ± 0.13	
Synth	DTW	38.6 ± 1.28	27.3 ± 1.37	32.1 ± 5.33	24.6 ± 1.20	$\textbf{22.7} \pm \textbf{3.55}$	23.1 ± 2.44	
	TDI	15.3 ± 1.39	26.9 ± 4.16	13.8 ± 0.712	17.2 ± 1.22	20.0 ± 3.72	$14.8~\pm~1.29$	
	MSE	31.5 ± 1.39	70.9 ± 37.2	37.2 ± 3.59	21.2 ± 2.24	75.1 ± 6.30	30.3 ± 4.10	
ECG	DTW	19.5 ± 0.159	18.4 ± 0.749	17.7 ± 0.427	17.8 ± 1.62	17.1 ± 0.650	16.1 ± 0.156	
	TDI	7.58 ± 0.192	38.9 ± 8.76	$\textbf{7.21}~\pm~\textbf{0.886}$	8.27 ± 1.03)	27.2 ± 11.1	$\textbf{6.59}~\pm~\textbf{0.786}$	
	MSE	0.620 ± 0.010	2.52 ± 0.230	1.93 ± 0.080	0.890 ± 0.11	2.22 ± 0.26	1.00 ± 0.260	
Traffic	DTW	24.6 ± 0.180	$\textbf{23.4} \pm \textbf{5.40}$	23.1 ± 0.41	24.6 ± 1.85	22.6 ± 1.34	23.0 ± 1.62	
	TDI	16.8 ± 0.799	$27.4~\pm~5.01$	$16.7\ \pm\ 0.508$	$15.4~\pm~2.25$	22.3 ± 3.66	$14.4 \pm \ 1.58$	

Table: Forecasting results with MSE, shape & time metrics (10 runs, avg \pm std). For each experiment, best method(s) (Student t-test) in bold.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Evaluation with external metrics

- Shape: ramp score [17]
- ▶ Time: Hausdorff distance between 2 sets of change points

		MSE	DTW_{γ}	DILATE (ours)
	Hausdorff	2.87 ± 0.127	3.45 ± 0.318	$\textbf{2.70}~\pm~\textbf{0.166}$
Synthetic	Ramp score (x10)	5.80 ± 0.104	$\textbf{4.27}~\pm~\textbf{0.800}$	$4.99\ \pm\ 0.460$
	Hausdorff	$\textbf{4.32} \pm \textbf{0.505}$	6.16 ± 0.854	$\textbf{4.23}~\pm~\textbf{0.414}$
ECG5000	Ramp score	$\textbf{4.84}~\pm~\textbf{0.240}$	$\textbf{4.79}~\pm~\textbf{0.365}$	$\textbf{4.80}~\pm~\textbf{0.249}$
	Hausdorff	$\textbf{2.16} \pm \textbf{0.378}$	$\textbf{2.29}~\pm~\textbf{0.329}$	$\textbf{2.13}~\pm~\textbf{0.514}$
Traffic	Ramp score (x10)	6.29 ± 0.319	$\textbf{5.78}~\pm~\textbf{0.404}$	$\textbf{5.93}~\pm~\textbf{0.235}$

Table: Forecasting results of Seq2Seq evaluated with Hausdorff and Ramp Score, averaged over 10 runs (mean \pm standard deviation). For each experiment, best method(s) (Student t-test) in bold.

イロト イヨト イヨト イヨト ヨー わへで

Comparison to tangled variants of DILATE

Eval loss		DILATE (ours)	DILATE ^t -Weighted	DILATE ^t -Band Constraint
Euclidian	MSE (×100)	$1.21~\pm~0.130$	1.36 ± 0.107	1.83 ± 0.163
Shape	DTW (×100)	$\textbf{23.1} \pm \textbf{2.44}$	$\textbf{20.5}~\pm~\textbf{2.49}$	$21.6~\pm~1.74$
	Ramp	$\textbf{4.99}~\pm~\textbf{0.460}$	$\textbf{5.56}~\pm~\textbf{0.87}$	5.23 ± 0.439
Time	TDI (x10)	$14.8~\pm~1.29$	17.8 ± 1.72	19.6 ± 1.72

Table: Comparison to the tangled variants of DILATE for the Seq2Seq model on the Synthetic dataset, averaged over 10 runs (mean \pm standard deviation).

▲□▶ ▲□▶ ★ □▶ ★ □▶ - □ - つへで

State of the art comparison

Baselines:

- N-Beats [12]
- Informer [20]

Dataset	Model	MSE	DTW	Ramp	TDI	Hausdorff	DILATE
Synthetic	N-Beats [16] MSE	$\textbf{13.6} \pm \textbf{0.5}$	24.9 ± 0.6	5.9 ± 0.1	$\textbf{13.8} \pm \textbf{1.1}$	2.8 ± 0.1	$\textbf{19.3} \pm \textbf{0.5}$
	N-Beats [16] DILATE	$\textbf{13.3} \pm \textbf{0.7}$	23.4 ± 0.8	4.8 ± 0.4	14.4 ± 1.3	2.7 ± 0.5	$\textbf{18.9} \pm \textbf{0.8}$
	Informer [17] MSE	$\textbf{10.4} \pm \textbf{0.3}$	20.1 ± 1.1	4.3 ± 0.3	13.1 ± 0.9	2.5 ± 0.1	16.6 ± 0.8
	Informer [17] DILATE	11.8 ± 0.7	$\textbf{18.5} \pm \textbf{1.2}$	2.4 ± 0.3	$\textbf{11.6} \pm \textbf{0.9}$	2.4 ± 0.9	$\textbf{15.1} \pm \textbf{0.7}$
Electricity	N-Beats [16] MSE	$\textbf{24.8} \pm \textbf{0.4}$	15.6 ± 0.2	$\textbf{13.3} \pm \textbf{0.3}$	4.6 ± 0.1	2.6 ± 0.3	13.4 ± 0.2
	N-Beats [16] DILATE	25.8 ± 0.9	$\textbf{15.5} \pm \textbf{0.2}$	$\textbf{13.3} \pm \textbf{0.3}$	4.4 ± 0.2	3.1 ± 0.5	$\textbf{13.2} \pm \textbf{0.2}$
	Informer [17] MSE	$\textbf{38.1} \pm \textbf{2.1}$	18.9 ± 0.6	13.2 ± 0.2	6.5 ± 0.3	2.1 ± 0.2	16.4 ± 0.5
	Informer [17] DILATE	$\textbf{37.8} \pm \textbf{0.8}$	$\textbf{18.5} \pm \textbf{0.3}$	$\textbf{12.9} \pm \textbf{0.2}$	5.7 ± 0.2	1.9 ± 0.1	$\textbf{15.9} \pm \textbf{0.3}$
ETTH1 (96)	N-Beats [16] MSE	32.5 ± 1.4	3.9 ± 0.2	13.3 ± 2.0	21.6 ± 4.3	5.7 ± 0.7	7.4 ± 1.0
	N-Beats [16] DILATE	$\textbf{26.0} \pm \textbf{2.8}$	2.9 ± 0.1	4.6 ± 0.6	11.4 ± 1.7	6.4 ± 1.0	4.6 ± 0.4
	Informer [17] MSE	$\textbf{28.2} \pm \textbf{2.6}$	4.3 ± 0.3	5.8 ± 0.1	21.6 ± 3.3	6.6 ± 1.9	7.8 ± 0.9
	Informer [17] DILATE	32.5 ± 3.8	$\textbf{3.2} \pm \textbf{0.3}$	$\textbf{4.5} \pm \textbf{0.3}$	$\textbf{19.1} \pm \textbf{1.9}$	$\textbf{6.4} \pm \textbf{1.0}$	$\textbf{6.4} \pm \textbf{0.6}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

APHYNITY optimization

- Trajectory based training: multi-step prediction, differentiable ODE solver
- In practice: adaptive constraint optimization (variant of Uzawa algorithm):

$$\mathcal{L}_{\lambda_j}(\theta_p, \theta_a) = \|F_a^{\theta_a}\| + \lambda_j \cdot \mathcal{L}_{traj}(\theta_p, \theta_a) \tag{4}$$

$$\blacktriangleright \mathcal{L}_{traj}(\theta_p, \theta_a) = \sum_{i=1}^{N} \sum_{h=1}^{T/\Delta t} \|X_{h\Delta t}^{(i)} - \widetilde{X}_{h\Delta t}^{(i)}\|$$

- $\theta = (\theta_p, \theta_a)$, Iterative λ_j setting: • $\lambda_{j+1} = \lambda_j + \tau_2 \mathcal{L}_{traj}(\theta_{j+1}), \tau_2$ hyper-parameter
- Stable and robust convergence

Algorithm 1: APHYNITY