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Success of AI
ChatGPT DALL-E

Deep Learning: underlying principle powering these breakthroughs

Segment Anything Model (SAM)

Ramesh, A., et al. “Zero-Shot Text-to-Image Generation”, ICML 2021
ChatGPT OpenAI, 2022, powered by GPT-3.5/4
Kirillov, A., et al. “Segment anything”, ICCV 2023
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Foundation models
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Vision perception & Vision Language Models (VLMs)

● Shared representation space for image and text
● Contrastive loss, e.g., CLIP, SigLIP

● Zero-shot classification
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Robustness of VLMs
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Post-hoc uncertainty quantification

• Safety-critical applications, e.g., medical domain
• Selective classification: reject uncertain inputs
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Post-hoc uncertainty quantification

● Foundation model re-training: computationally expensive
● Post-hoc: predictive model frozen
● Auxiliary uncertainty module

6



Post-hoc uncertainty quantification

● Out-of-distribution 
(OOD) (unknown)

● Reducible
→ Out-of-distribution 
detection

● Ambiguous example
● Irreducible

→ Failure prediction

I have never 
seen such a 

thing...

Could be a 
wolf or a 

dog…
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Adaptation of VLMs: domain shifts

→ Adaptation needed for highly specialized applications 

Domain shifts: common in the medical domain: acquisition devices, centers, populations, etc
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● No annotated samples
● Exploit incoming test-samples (online)

Test-Time-Adaptation (TTA)

Additional requirement: Maintain or improve robustness after 
adaptation 9



Today’s talk

• ViLU [A]: UQ for VLMs, failure prediction
• Fine text-image interactions for UQ
• Large-scale training & generalization

• CLIP-TTA [B]: test-time adaptation for CLIP
• Training loss adapted to CLIP
• Robustness to pseudo-label errors & class collapse

[A] ViLU: Learning Vision-Language Uncertainties for Failure Prediction.
M. Lafon, Y. Karmim, J. Silva-Rodriguez, P. Couairon, C. Rambour, R. Fournier, I. Ben Ayed, J. Dolz, N. Thome. ICCV 2025.

[B] CLIPTTA: Robust Contrastive Vision-Language Test-Time Adaptation.
M. Lafon, G. Vargas Hakim, C. Rambour, C. Desrosiers, N. Thome. NeurIPS 2025. 10



Outline

1. ViLU
2. CLIPTTA

11



Failure Prediction with deep neural nets

• Simple baseline: Maximum Class Probability (MCP)

• Confidence criterion C(x): 
separate correct from incorrect 
prediction
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Failure Prediction with VLMs

● Pros:
○ Strong baseline
○ No training required

Failure

Success

● Cons:
○ Overconfident by design for errors
○ Limited adaptability

Maximum Concept Matching (MCM) = Probability of predicted class with VLMs

• MCP Extension to VLMs
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Failure Prediction for vision models: loss prediction

ConfidNet, Corbière, C., et al. “Addressing failure prediction by learning model confidence”. NeurIPS 2019
D. Yoo and In So Kweon. Learning loss for active learning. CVPR 2019
Kirchhof, Michael, et al. "Pretrained visual uncertainties." arXiv preprint 2024

● Learning to predict the training loss 
● High predicted loss = likely incorrect prediction
● Learning Visual Uncertainties (LVU): ConfidNet, PVU

→ How to adapt loss prediction for VLMs ?
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Taking task complexity into account

What is the uncertainty associated 
with this image ?

→ It depends on the task

Task 1: cat vs dog classification 

● Low class confusion
● Low uncertainty 
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Taking task complexity into account

What is the uncertainty associated 
with this image ?

→ It depends on the task

Task 2: Dog breed classification

● Higher class confusion
● High uncertainty 
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ViLU: Learning Vision-Language Uncertainty

● LVU methods use visual input only
● ViLU → Learn uncertainty contextualized with the task information 
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ViLU: Learning Vision-Language Uncertainty

● Inputs: visual representation       + K concept embeddings
● ViLU embedding: ,        pred.  Class embedding 

● Image-text cross-attention module => 
● Query      , keys/values 18



ViLU: Learning Vision-Language Uncertainty

● Failure prediction from ViLU embedding:
binary classification 

● Consistent generalization of MCM 
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Experiments

● ViLU trained and evaluated on each downstream dataset
● 13 classification datasets (e.g. ImageNet)
● 3 Image-caption datasets (e.g. CC12M)

● Metrics: FPR95 and AUC

● Baselines : 
● MCM, entropy, DOCTOR
● Data-driven predictors: LVU, Rel-U, BayesVLM
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Results

● LVU competitive on small datasets (e.g. CIFAR-10)
● ViLU achieves best performance
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Results

● LVU struggles on challenging datasets (e.g. ImageNet)
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Results

● Importance of ViLU embeddings: XA + predicted class  
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Model Analysis

Data efficiency: ViLU effective even with a small fraction of train set
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Model Analysis

Effective with low ZS accuracy 
≠ MCM, BayesVLM
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Model Analysis

● ViLU better separation
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Model Analysis

● Misclassification detection with ViLU ≠ MCM or LVU
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Towards zero-shot uncertainty quantification

● ViLU pre-trained on CC12M transfers well on downstream datasets 28



Outline

1. ViLU
2. CLIPTTA
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Test-Time-Adapation (TTA) methods of vision models

Wang, Dequan, et al. "Tent: Fully test-time adaptation by entropy minimization." ICLR 2021.

• TENT-like methods:  
pseudo-labels, 
reinforce predictions
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TENT-like TTA methods for vision models
Vi

si
on

 m
od

el

• Entropy minimization: soft version of cross-entropy 
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TTA on VLMS, e.g., CLIP: objective mismatch

=> CLIP-TTA 32



CLIP-TTA: how to use CLIP objective at test-time?
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CLIP-TTA: soft-contrastive loss

• Use CLIP loss for the predicted text / caption
• Does not account for the uncertainty among the pseudo-captions
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CLIP-TTA: soft-contrastive loss

● Still aligned with CLIP loss, exploit uncertainty among the pseudo-captions
● => Entropy version of CLIP loss

● Loss computed on batch +  on a memory batch 𝓜 + regularization loss
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CLIP-TTA soft-contrastive loss: properties
Gradient analysis 

• Always points towards predicted class
• Always Reinforces errors

• Can points towards a class ≠ prediction
• Batch-aware gradient: leverage correct 

predictions to correct errors
• Mitigate pseudo-label drift
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CLIP-TTA soft-contrastive loss: properties
• Toy example:

3-class classification 
problem, batch of size 6, 
sample 4 wrongly 
classified

• CLIPTTA gradient points 
towards correct class

• Can be combined with a 
regularization loss
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Extension to open-set TTA
● Deal with In-Distribution (ID) & Out-Of-Distribution (OOD) samples in a batch

● Use MCM confidence, learn a separation threshold ⍺ =>
● Outlier Contrastive Exposure (OCE) loss to increase ID/OOD separability

38



Experiments
• Experiments on 75 datasets

• Corruptions: 15 corruptions applied to CIFAR-10, CIFAR-100, ImageNet
• Domain shifts: VisDA-C, PACS, OfficeHome, Imagenet-Domains
• Coarse grained classification: CIFAR-10, CIFAR-100
• Fine-grained classification: Imagenet, + 10 datasets from the CLIP zero-

shot suite 

• Baselines
• TENT-like: ETA, SAR, RoTTA, + CLIP TENT-like : CLIPArTT, WATT
• More generic methods: 

• Test-Prompt-Tuning (TPT)
• Parameter-free: Training-free Dynamic Adapter (TDA) 

• Results in non-episodic setting (no reset)
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Overall results

● Outperforms SOTA results on 
each class of dasets

● ≠ Specific methods effective 
only on some datasets, e.g., 
TDA on ImageNet 
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CLIPTTA Results: detailed results

• Huge performance boost on corrupted datasets, where CLIP’s ZS performance low
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CLIP-TTA: robustness to pseudo-label drift

● CLIPTTA improves during adaptation
● TENT-based methods collapse

CIFAR-10-
C 

● Big improvements due to
● Reg and memory can further boost results
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CLIP-TTA: Coarse/fine-grained classification
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CLIP-TTA: open-set TTA

• ImageNet ID, Places OOD

• OOD detection: baselines << 
CLIP ≠ CLIPTTA (ours)

• CLIPTTA + OCE boost OOD 
detection with maintained 
accuracy
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Conclusion & perspectives

• ViLU: failure prediction for VLMs
• CLIPTTA: open-set TTA for CLIP, OOD detection

Perspectives
• ViLU: generalization & combining failure, OOD + calibration
• Extension to semantic segmentation & theoretical guarantees 

(conformal)
• CLIPTTA: detecting ID failures before adaptation, UQ to overcome low 

ZS accuracy & pseudo-label drift 
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Thank you for your attention!

•Questions?
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