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Context: AI/ML summer 
• AI in the last decade: huge 

performance boost
• Vision, NLP, multi-modal prediction 

robotics
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Context: robustness in deep learning

Several brittleness aspects in deep learning models 
• Explainability, biases & shortcuts, fairness, etc

Stability: adversarial examples, mistake severity
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Context: robustness in deep learning
Uncertainty Quantification (UQ)

“Know when you do not 
know”

Abstain to make a prediction

UQ: a challenge in DL 
• Which uncertainty score?
• What type of uncertainty: aleatoric, epistemic? 
• Which tasks: calibration, failure prediction, anomaly detection? 3



Sources of uncertainty
• Aleatoric uncertainty: data 

• Class confusion, ambiguous data, sensor noise

• Epistemic uncertainty: model
• Distribution shift in p(x,y), e.g. x (snow, image->cartoon), or y (open set, new classes)
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Uncertainty Quantification in deep learning

1.Calibration
2.Out-of-distribution / anomaly detection
3.Failure Prediction
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Uncertainty <-> confidence quantification
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Calibration

Calibrated probabilities: estimated confidence C(x)  accuracy 
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Why does calibration matters?
“Know when you do not 

know”
Abstain to make a prediction

• Predicted confidence c(x) = accuracy => c(x) > 𝜏: statistical guarantees
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Baseline UQ score: classification example 
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Estimating calibration of confidence scores

Expected calibration error: 
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Post-hoc calibration
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How to evaluate calibration?

• Expected Calibration Error (ECE) for calibration only
• Proper scoring rules S(p,q):

• S(p,q) is minimized of p=q. Ex: NLL or MSE for classification or regression
• Using them for evaluating prediction models: include both discrimination 

(accuracy, AUC) and calibration
• Brier Score (BS) & Continuous Ranked Probability Score (CRPS) for 

continuous outputs (regression)

• Negative Log-Likelihood (NLL) - Negative Log Predictive Density (NLPD) 
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Learning calibrated models
• Fighting overconfidence: controlling logit’s scale, e.g., [Murugesan et.al., 2024 ]

[Murugesan et.al., 2024 ]Neighbor-Aware Calibration of Segmentation Networks with Penalty-Based Constraints. Balamurali 
Murugesana, Sukesh Adiga Vasudevaa, Bingyuan Liub, Herve Lombaerta, Ismail Ben Ayeda, Jose Dolz. Medical Image Analysis, 2024
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Uncertainty Quantification in deep learning

1.Calibration
2.Failure Prediction
3.Out-of-distribution / anomaly detection
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Failure prediction in classification

• Post-hoc task: UQ of 
a pre-trained model to 
detect its own errors

• A binary classification problem:  correct vs incorrect prediction

• Imbalance => evaluated by ranking 
metrics: AUC ROC, AUPR, FPR95, etc
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Baseline methods for failure prediction

•
• Overconfident by design

• Entropy: class-permutation invariant
• Not targeted for failure prediction
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~ => confidence := || ෠𝑃||2

Failure prediction methods

• DOCTOR [GRG+21] : 
•

•

• Theoretical bounds for failure prediction 
• Gini D𝛂: still class-permutation invariant

~ MCP

[GRG+21] F. Granese, M. Romanelli, D. Gorla, C. Palamidessi, P.Piantanida. DOCTOR: A simple method for 
detecting misclassification errors. NeurIPS‘21
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Calibration & Failure Prediction
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Calibration: absolute score vs 
Failure prediction: relative score to distinguish correct from in correct predictions



Criterion for Failure Prediction
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• Idea [CTB+19]: True Class probability (TCP) instead Maximum Class 
Probability (MCP)

• TCP better distinguish correct prediction from incorrect predictions  MCP for 
failure prediction
• Theoretical guarantees:

• Perfect separation with

[CTB+19] C. Corbière, N. Thome, A. Bar-Hen, M. Cord, P. Pérez. Addressing Failure Detection by Learning Model Confidence. NeurIPS 2019.

MCP TCP



Learning Confidence
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TCP unknown at test time: learning it! => ConfidNet

• Pre-trained prediction model (blue)
• Learning to regress TCP with an 

auxiliary model (orange)

[CTB+19] C. Corbière, N. Thome, A. Bar-Hen, M. Cord, P. Pérez. Addressing Failure Detection by Learning Model Confidence. NeurIPS 2019.
[YK19] D. Yoo and In So Kweon. Learning loss for active learning. CVPR 2019
[K24] Kirchhof, Michael, et al. "Pretrained visual uncertainties." arXiv preprint 2024

Same idea in different contexts: [YK19, K24] => Learning Visual Uncertainties (LVU)



Learning confidence for self-labelling
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[CTS+21] C. Corbière, N. Thome, A. Saporta, T-H. Vu, M. Cord, P. Pérez. Confidence Estimation via Auxiliary Models. IEEE Transactions on Pattern 
Analysis and Machine Intelligence (T-PAMI), vol. 44, no. 10, pp. 6043-6055, June 2021.

• Extension for domain adaptation [CTS+21] 



Learning confidence for self-labelling
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[PTS21] O. Petit, N. Thome, L. Soler. 3D Spatial Priors for Semi-Supervised Organ Segmentation with Deep Convolutional Neural Networks. 
International Journal of Computer Assisted Radiology and Surgery, Springer Verlag, In press, 2021.

• Extension for Medical image segmentation [PTS21] 



Learning class distance matrix in classification
• Relative Uncertainty (Rel-U) [DRG+24]: 

• Learn a trainable distance matrix :
• Optimize to separate errors/correct predictions; 

[DRG+24] E. Dadalto, M. Romanelli, G. Pichler, and P. Piantanida. A data-driven measure of relative uncertainty for 
misclassification detection. ICLR'24.

s.t.
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Learning class distance matrix in classification

• Closed-form solution

• Distance matrix: limit the number of trainable parameters, suitable 
in few-shot context

=
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UQ for Vision-Language Models (VLMs)
• Vision-Language Models: e.g., text—image (CLIP) [3]

[3] Learning Transferable Visual Models From Natural Language Supervision. 1. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. 
Askell, P. Mishkin, J. Clark, G. Krueger, I. Sutskever. ICML 2021
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Failure Prediction with Vision Language Models (VLMs)

● Pros:
○ Strong baseline
○ No training required

● Cons:
○ Overconfident by design 

for errors
○ Limited adaptability

• Maximum Concept Matching (MCM) = Probability of predicted class with VLMs

• MCP Extension to VLMs

• Learning Visual Uncertainties (LVU): don’t take into account text uncertainties
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Failure

Success

[CTB+19] C. Corbière, N. Thome, A. Bar-Hen, M. Cord, P. Pérez. Addressing Failure Detection by Learning Model Confidence. NeurIPS 2019.
[YK19] D. Yoo and In So Kweon. Learning loss for active learning. CVPR 2019
[K24] Kirchhof, Michael, et al. "Pretrained visual uncertainties." arXiv preprint 2024



Taking task complexity into account

What is the uncertainty associated 
with this image ?

→ It depends on the task

Task 1: cat vs dog classification 

● Low class confusion
● Low uncertainty 

27



Taking task complexity into account

What is the uncertainty associated 
with this image ?

→ It depends on the task

Task 2: Dog breed classification

● Higher class confusion
● High uncertainty 
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ViLU: Learning Vision-Language Uncertainty

● Inputs: visual representation       + K concept embeddings
● ViLU embedding: ,        pred.  Class embedding 

● Image-text cross-attention module => 
● Query      , keys/values 29



ViLU: Learning Vision-Language Uncertainty

● Failure prediction from ViLU embedding:
binary classification 

● Consistent generalization of MCM 
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Conformal prediction & theoretical guarantees

• Matteo’s talk!
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Uncertainty Quantification in deep learning

1.Calibration
2.Failure Prediction
3.Out-of-distribution / anomaly detection
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OOD/ anomaly detection
• Detecting OODs/anomalies <=> epistemic uncertainty

• Binary classification problem: in-distribution (ID) vs OOD
• 2 main classes of approaches for OOD 

1. Bayesian methods: estimating the predictive distribution p(y| x*, D)
2. Estimating ID density p(x) 

Sehwag, V., et al. "SSD: A unified framework for self-supervised outlier detection." ICML 2021.
Sun, Yiyou, et al. "Out-of-distribution detection with deep nearest neighbors." ICML, 2022.
Lafon. et al. "Hybrid Energy Based Model in the Feature Space for Out-of-Distribution Detection." ICML 2023.
A, Heng et.al. "Out-of-Distribution Detection with a Single Unconditional Diffusion Model". NeurIPS 2024

• Density in the feature 
space of a pre-trained 
model

• State-of-the-art: 
GMM, KNN, EBM, 
diffusion models, etc
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Out-Of-Distribution (OOD) detection
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• State-of-the-art ID density estimation: prior densities, e.g., GMM, Energy Logits 
(EL)

• Prior density: not accurate => Energy correction
• GMM good for far-OOD, EL for near-OOD =>Energy composition



OOD detection
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• HEAT [LRR+23]: Hybrid Energy Based Model (EBM) in the feature space for OOD 
detection

[LRR+23] M. Lafon, E. Ramzi, C. Rambour, N. Thome. Addressing Failure Detection by Learning Model Confidence. ICML 2023.

• Energy-based correction of prior energy 
terms, e.g. Gaussians

• Energy composition of several terms 
(Gaussian, Energy Logits, std for style)



Bayesian methods 
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Bayesian methods 
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Bayesian Linear Regression 

Convolution between 2 
Gaussians => Gaussian
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Bayesian Linear Regression 
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Beyond Bayesian Linear Regression 

: approximating with a Gaussian distribution  

• 𝜃: parameters of the Gaussian distribution, i.e. mean 𝜇, covariance 𝛴
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Approximating posterior with q𝜃(w)

• Laplace approximation 
• Fit q𝜃(w) on the mode of p(w|D)

• Used in Bayesian Logistic regression

• Variational approximation:
Minimize

• More global fitting 

• Used in Bayesian Neural Networks
41



Laplace for Vision Language Models (VLMs)
• BayesVLM [A]: post-hoc Laplace approximation in VLMs, pre-trained  e.g., LAION
• Estimate the distribution of similarities between text/image pairs 

• Estimate the distribution of the last layer or text/image encoders independently
• Kronecker-factored (KFAC) Generalized Gauss–Newton (GGN) Hessian approx

[A] Post-hoc Probabilistic Vision-Language Models. ICLR 2026 submission 
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VI in Bayesian Neural Networks (BNNs)

• Generally, independence between weights (mean field)+  simple 1D Gaussians  
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Approximating Predictive Distribution
=> approximate with Monte Carlo (MC) sampling

Easy to sample from q𝜃(w)
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Monte Carlo Dropout

• Dropout as a variational inference [Gal, 2016]
• Big results: training with dropout is a special VI case

• With some specific approximate posterior distribution

• Ml deterministic weights, q(Wl) approximate posterior

• => MC sampling of model trained 
with dropout: predictive distribution
• Mean ~ prediction
• Std ~ uncertainty
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Ensembling

• MC sampling  ensembling different models 
• Simple but effective baseline: train several models on the same dataset

• Use disagreement, e.g. Mutual Information, as epistemic uncertainty

Lakshminarayanan, B., Pritzel, A., and Blundell, C.. Simple and scalable predictive uncertainty estimation using deep ensembles. NeurIPS 2017.
46

• Main drawback: High training & inference cost



Future directions in Uncertainty Quantification
• A unified uncertainty score (epistemic/aleatoric/calibration) able to 

capture different facets of uncertainties

• UQ for sequential decision tasks, forecasting or NLP? 
• Which uncertainty for LLMs / Generative VLMs?

• Dense/structured prediction tasks, correlations – segmentation
• How to design UQ score reflecting these correlations?

• Statistical guarantees of UQ? 
• Conformal, but needs conditional guarantees
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Thank you for your attention

• Questions? 
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