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Context: Al/ML summer

* Alinthe last decade: huge
performance boost

* Vision, NLP, multi-modal prediction
robotics
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explain quantum theory to a child in the style of snoop dogg

Vision Transformer (ViT)

MLP Yo, little homie, let me break it down for you
Head Quantum theory, it's a crazy thing, it's true

See, the world is made up of tiny, tiny particles

That are always moving, and changing, and actin' wild
Transformer Encoder

These particles, they don't always behave like we think

Sometimes they're waves, and sometimes they're points, it's a trip
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* Extra learnable It's a mind-blowing concept, but that's the quantum fate
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Quantum theory, it's the way the world does what it do.

Quantum theory, it's just the way the world works, it's understood
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Context: robustness in deep learning

Several brittleness aspects in deep learning models
* Explainability, biases & shortcuts, fairness, etc

Stability: adversarial examples, mistake severity

Query image




Context: robustness in deep learning

Uncertainty Quantification (UQ)

“Know when you do not Abstain to make a prediction
know”
S O
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IF ' ‘
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test (eg Upred:Hpred) ‘ e Cenam
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N/
Probabilistic (_
Model
UQ: a challenge in DL

* Which uncertainty score?
 What type of uncertainty: aleatoric, epistemic?
* Which tasks: calibration, failure prediction, anomaly detection?
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Sources of uncertainty

* Aleatoric uncertainty: data
* Class confusion, ambiguous data, sensor noise

* Epistemic uncertainty: model
* Distribution shiftin p(x,y), e.g€. X (snow, image->cartoon), ory (open set, new classes)




Uncertainty Quantification in deep learning

1.Calibration



Uncertainty <-> confidence quantification

e Confidence estimate C(x;) goal: distinguish correct from
erroneous predictions

Confidence measure

P(errors) P(success)

* Sort examples wrt C(x;)

> Evaluate capacity of C to assign larger prediction values for correct
predictions than for errors



Calibration

Calibrated probabilities: estimated confidence C(x) < accuracy

® Test Data: D= (X,Y)={(xt,y1), ..., (Xn, yn) }
* (yi, CA'(x,-)) class prediction and confidence level

® Perfect calibration:
by Mlc bl b b [0

* Predicted confidence match actual accuracy

> e.g. given 100 predictions, each with confidence of 0.8, we expect
that 80 should be correctly classified.
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Why does calibration matters?

“Know when you do not Abstain to make a prediction
know”
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* Predicted confidence c(x) = accuracy => c(x) > 7: statistical guarantees




Baseline UQ score: classification example

* (Classification model trained on D = {(x,-,y,-*)}l./\i1

g c* ! y*
> » Classifier W
= Lce

Classification model

* Model prediction: § = arg max,y, p(Y = k|lw, x)

e Model confidence C(x):
> Simple baseline for deep neural networks: MCP(x) = max p(Y = k|lw, x)



Estimating calibration of confidence scores

Reliability Diagram
M interval bins.
B, set of samples whose predictions
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[Guo et al., 2017] showed that modern neural networks are no

longer well-calibrated!
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Post-hoc calibration

® Simple solution to over-confident prediction: temperature

scaling [Guo et al., 2017] esk/T
HOT s
o 5 esk| T
® temperature T optimized on val set s.t. acc(B,,) = conf(Bn) k=1
Uncal. - CIFAR-100 Temp. Scale - CIFAR-100
ResNet-110 (SD) ResNet-110 (SD)
B Outputs Bl Outputs

1 Gap 1 Gap

Accuracy

0.0
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How to evaluate calibration?

* Expected Calibration Error (ECE) for calibration only

* Proper scoring rules S(p,q):

* S(p,q) is minimized of p=qg. Ex: NLL or MSE for classification or regression

* Using them for evaluating prediction models: include both discrimination
(accuracy, AUC) and calibration

* Brier Score (BS) & Continuous Ranked Probability Score (CRPS) for
continuous outputs (regression)

1 N
—_— . a— A- 2
BS = N ;li\lyz Ysz

* Negative Log-Likelihood (NLL) - Negative Log Predictive Density (NLPD)
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Learning calibrated models

* Fighting overconfidence: controlling logit’s scale, e.g., [Murugesan et.al., 2024 ]

min Lok + /\; 1T — Ui]
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FL FL FL FL FL FL
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MbLS LS MbLS LS MbLS | LS MbLS LS MbLS LS MbLS LS

SVLS SVLS SVLS SVLS SVLS SVLS

Figure 1: Compromise between calibration and discriminative performance. For each dataset, we show the discriminative (DSC) and calibration (ECE) results
obtained by each method. We expect a well-calibrated model to achieve simultaneously large DSC (in blue) and small ECE (in brown) values.

[Murugesan et.al., 2024 ]Neighbor-Aware Calibration of Segmentation Networks with Penalty-Based Constraints. Balamurali
Murugesana, Sukesh Adiga Vasudevaa, Bingyuan Liub, Herve Lombaerta, Ismail Ben Ayeda, Jose Dolz. Medical Image Analysis, 2024
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Uncertainty Quantification in deep learning

2.Failure Prediction



Failure prediction in classification

* Post-hoc task: UQof ___ D _

AT o o | y*
a pre-trained model to = - SR EN BN N A
detect its own errors S, l | Lex

Classification model

* A binary classification problem: correctvs incorrect prediction

* Imbalance => evaluated by ranking
metrics: AUC ROC, AUPR, FPR95, etc
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Baseline methods for failure prediction

c* | y*
> » Classifier . N
: Lce

Classification model

* MCP(x) = max p(Y = klw, x)

* Overconfident by design

Target =7,Pred =2 10 10 Target =7,Pred =7
* Entropy: class-permutation invariant
. . . 0.4 4 0.4 4
* Not targeted for failure prediction W .
0.0 +—— T — 0.0 -
0123456789 0123456789 .
Erroneous prediction, H(Y | x,0) = 0.79 Correct prediction, H(Y | x,0) = 0.79

H(Y | x,0) == — z P(Y = k| x,8) - log P(Y = k| x,6)
key
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Failure prediction methods

« DOCTOR [GRG+21] :
s 1 (X: A/) ~ Sgini(X) 21— Z (ﬁ(x)y)Q => confidence := ||p||2

yey

e Ds(x,7) ~MCP

* Theoretical bounds for failure prediction
* Gini D, still class-permutation invariant

[GRG+21] F. Granese, M. Romanelli, D. Gorla, C. Palamidessi, P.Piantanida. DOCTOR: A simple method for
detecting misclassification errors. NeurlPS‘21
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Calibration & Failure Prediction

CIFAR10 - Maximum Class Probability Maximum Class Probability
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Calibration: absolute score vs
Failure prediction: relative score to distinguish correct from in correct predictions
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Criterion for Failure Prediction

 ldea [CTB+19]: True Class probabilitv (TCP) instead Maximum Class
Probability (MCP) TCP : P(Y = y*|w,x)

 TCP better distinguish correct prediction from incorrect predictions MCP for

failure prediction

* Theoretical guarantees: TCP(x,y*) < 1/K = § # y*

TCP(x,y*) > 1/2 =4 =y*

—3 Correct predictions f = Correct predictions
14 { 3 Misclassifications .l Py .
| 14 | == Misclassifications '
12 1 ' ,'
, l
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= ' z |
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I |
' |
4 |
| |
| [
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MCP
* Perfect separation with m(z) = P(y" | z) — Z{lg?fp(y' | z)

[CTB+19] C. Corbiere, N. Thome, A. Bar-Hen, M. Cord, P. Pérez. Addressing Failure Detection by Learning Model Confidence. NeurlPS 2019.



Learning Confidence

TCP unknown at test time: learning it! => ConfidNet

P e * Pre-trained prediction model (blue)
image 0 . H  Learningtoregress TCP with an
W g Leont auxiliary model (orange)
MCPr(z) i 1N
moosej - Leonf (0, D) = —Z(é(x,-,@)—c*(x,-,y,-*))z
true class y 8 )TCPr(z,y) ..+ N
: 4

Same idea in different contexts: [YK19, K24] => Learning Visual Uncertainties (LVU)

[CTB+19] C. Corbiere, N. Thome, A. Bar-Hen, M. Cord, P. Pérez. Addressing Failure Detection by Learning Model Confidence. NeurlPS 2019.

[YK19] D. Yoo and In So Kweon. Learning loss for active learning. CVPR 2019 20
[K24] Kirchhof, Michael, et al. "Pretrained visual uncertainties." arXiv preprint 2024



Learning confidence for self-labelling

* Extension for domain adaptation [CTS+21]

Image Ground-truth labels Predicted labels
Cw adversarial
. training
multi-scale ConfidNet
- - < Cadv
% 2 LG » Lp
= B e 1 " n
MCP pseudo-labels ConDA pseudo-labels £ 8 i~ "j
S o e
confidence net C
= shared shared shared -
k= (fixed) classification net F v
é Lconf
: s

TCP(mS,yS)

[CTS+21] C. Corbiere, N. Thome, A. Saporta, T-H. Vu, M. Cord, P. Pérez. Confidence Estimation via Auxiliary Models. IEEE Transactions on Pattern
Analysis and Machine Intelligence (T-PAMI), vol. 44, no. 10, pp. 6043-6055, June 2021. 21



Learning confidence for self-labelling

* Extension for Medical image segmentation [PTS21]

(a) Prediction (c) Learned Conf.

[PTS21] O. Petit, N. Thome, L. Soler. 3D Spatial Priors for Semi-Supervised Organ Segmentation with Deep Convolutional Neural Networks.
International Journal of Computer Assisted Radiology and Surgery, Springer Verlag, In press, 2021.
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Learning class distance matrix in classification

* Relative Uncertainty (Rel-U) [DRG+24]:
- Learn a trainable distance matrix : S4(x) = p(x) Dp(x) "
* Optimize to separate errors/correct predictions;

L(D) £ (1= ) -E [B(X4) DBX4)T| = A-E [B(X-) DB(X-)T]

’dii =0, Vie)y
di; = 0, T =Y
st _ .
dij = djs, iy =
D) kK

R

[DRG+24] E. Dadalto, M. Romanelli, G. Pichler, and P. Piantanida. A data-driven measure of relative uncertainty for
misclassification detection. ICLR'24. 23



Learning class distance matrix in classification

sa(x) = p(x) Dp(x)" = > > dy, v)p(x), (),

yeYy' ey
e Closed-form solution

D* =ReLU (\-E [ﬁ(x_)Tﬁ(X_)} LB {ﬁ(X+)Tﬁ(X+)} )

* Distance matrix: limit the number of trainable parameters, suitable
In few-shot context

24



UQ for Vision-Language Models (VLMs)

* Vision-Language Models: e.g., text—image (CLIP) [3]

(1) Contrastive pre-training (2) Create dataset classifier from label text
Pepper the
Text y hete of ‘
aussie pup e | ] A photo of Text
Encoder . — . . "1 Encoder ‘ ‘ |
Y Y A Y
L T Tz T3 Tn
— | LTy | T, | Ty | . | Ty .
: o I ' ™| (3) Use for zero-shot prediction | ¥ ¥
} —>» [2 l: T| ‘ [2'T3 l:‘T; - l:'T.\- . Tl Tz T] T.\l
lmage [1 l; T I:'T» l'l'T'\ I+ Ty
Encoder — s e B N I LT, LTy 1T I,'Tn
> Iy INT) | InT2 [ InTs | .. |InTx A photo of
a -
[3] Learning Transferable Visual Models From Natural Language Supervision. 1. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. 25

Askell, P. Mishkin, J. Clark, G. Krueger, I. Sutskever. ICML 2021



Failure Prediction with Vision Language Models (VLMs)

 Maximum Concept Matching (MCM) = Probability of predicted class with VLMs

* MCP Extension to VLMs
e Pros:

o Strong baseline
o No training required

-
Encoder
e e Cons:

g . o Overconfident by design

“This is a photoofa__" n:;ndgr > . i L fOr errOrS
— [ -~ N
—T T T o Limited adaptability
Bird Frog Dog Cat - Truck ~_>nm- .
Yin MCM score distribution

e Learning Visual Uncertainties (LVU): don’t take into account text uncertainties

[CTB+19] C. Corbiere, N. Thome, A. Bar-Hen, M. Cord, P. Pérez. Addressing Failure Detection by Learning Model Confidence. NeurlPS 2019.

[YK19] D. Yoo and In So Kweon. Learning loss for active learning. CVPR 2019 6
[K24] Kirchhof, Michael, et al. "Pretrained visual uncertainties." arXiv preprint 2024



Taking task complexity into account

Task 1: cat vs dog classification

What is the uncertainty associated
with thisimage ?

o Low class confusion
o Low uncertainty

— It depends on the task

27



Taking task complexity into account

Task 2: Dog breed classification

LY , S Shy A
What is the uncertainty associated y 3 )/’ M H ‘ wiy _ h
with this image ? S o T
« Higher class confusion

- It depends on the task o High uncertainty

28



ViLU: Learning Vision-Language Uncertainty

Input image

X « wolf with a thick fur coat
stands proudly, gazing into

the distance as the cold wind
brushes through its fur.”

/ “A beautiful Czechoslovakian
Wolfdog looking at us.”

Set of textual captions

ViLU I
Vision | '
VA .
Encoder % ¢ \glég, :
: embedding : Fai.lul:e
Bl : zy, —> %9 Z, : prediction
- VIM | > [ % —>§_|_>3)
| Zty —> & Z - J [
zvil,L' * >
I Y I r
Text * [ Zt | VLM et
= Encoder e —+—> Prediction | N
Zt, | I
e Inputs: visual representation z, + K concept embeddings Z: = {2z}, .«
e ViLU embedding: Zy;y = (zv,z,g, z,?‘),zf pred. Class embedding
e Image-text cross-attention module =>=z¢"
29
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ViLU: Learning Vision-Language Uncertainty

Input image

Vision e
Encoder
Black-box
_ VLM
X «p wolf with a thick fur coat @
stands proudly, gazing into
the distance as the cold wind
brushes through its fur.” Text & ztl
—> >
Encoder 7
k
/" “A beautiful Czechoslovakian
Wolfdog looking at us.”

Set of textual captions

o Failure prediction from ViLU embedding:

binary classification
e Consistent generalization of MCM

ZviLu — (zva 23y z?)
1

0 I; O
with A= 1I; 0 0 |
0 0O

ViLU l
|
I ¢ ViLU '
: embedding : Failure
> Z rediction
: Z, > 0 v I p
. S VRN N
| Zi, —> 8 ' Z - aw) |
I = @ t - = [ i
| Y ViLU > > I
| L LWBCE
o | (Eq.9)
Prediction :

T T
Gonp (ZViLU) & 5ZViLU A zviLu = 2, %
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Conformal prediction & theoretical guarantees

e Matteo’s talk!

31



Uncertainty Quantification in deep learning

3.0ut-of-distribution / anomaly detection



OOD/ anomaly detection

* Detecting OODs/anomalies <=> epistemic uncertainty
* Binary classification problem: in-distribution (ID) vs OOD

* 2 main classes of approaches for OOD
1. Bayesian methods: estimating the predictive distribution p(y| x*, D)
2. Estimating ID density p(x)

! K ik i * Densityinthe feature
- | 47 / gl 10> space of a pre-trained

N Zin

Vision # model

Encoder e State-of-the-art:

tra::gjznnﬁgcé(:tc;nsnly \ / q(Z00d) low —» 00D GMM: KNN, EBM,
fone diffusion models, etc

\

x 00D

Sehwag, V., et al. "SSD: A unified framework for self-supervised outlier detection." ICML 2021.

Sun, Yiyou, et al. "Out-of-distribution detection with deep nearest neighbors." ICML, 2022.

Lafon. et al. "Hybrid Energy Based Model in the Feature Space for Out-of-Distribution Detection." ICML 2023. 33
A, Heng et.al. "Out-of-Distribution Detection with a Single Unconditional Diffusion Model". NeurlPS 2024



Out-Of-Distribution (OOD) detection

* State-of-the-art ID density estimation: prior densities, e.g., GMM, Energy Logits
(EL)

Prior 1 - (GMMm) Hybrid density 1 - (HEAT-GMM)

FPRpeer = 51.6% E FPRy.or = 46.9%
\ g

FPRp, = 7.0% FPRp, = 7.1%

.g - g HEAT
3 8 FPRyeor = 39.4%
FPRp = 6.2%
Prior K - (EL) . Hybrid density K - (HEAT-EL) : g
FPRyeor = 45.2% FPRyeor = 44.0% 2
FPRy, = 17.8% FPRy, = 16.6% /
s FPRy: False Positive Rate on Near/Far OODs

Density
Density

a) Prior scorers b) Hybrid densities (Sec. 3.1) ¢) Energy composition (Sec. 3.2)

* Prior density: not accurate => Energy correction
e GMM good for far-OOD, EL for near-OOD =>Energy composition

34



OOD detection

* HEAT [LRR+23]: Hybrid Energy Based Model (EBM) in the feature space for OOD
detection

Prior Energy (" Residual EBM ) Hybrid Energy
Ex Es, Eg,
- Q
O i -~
— o HEAT
- h e —> .
. . Composition
10 P LinO8) =Loe(Ok)+ALc(8k) © ) & i -
* Egar (7) P
< pu N —i
Prior Energy Residual EBM Hybrid Energy
h
Z Ex oEg 2 Eq,.
- (o
I @ 8 8 o - L4
o]
o]
A J

* Energy-based correction of prior energy

. * Energy composition of several terms
terms, e.g. Gaussians

(Gaussian, Energy Logits, std for style)

[LRR+23] M. Lafon, E. Ramzi, C. Rambour, N. Thome. Addressing Failure Detection by Learning Model Confidence. ICML 2023. 35



Bayesian methods

® Observed inputs X = {x;},’\il and outputs Y = {YI},',\il

> x; e RY, y; e R (classification or regression)
> Model with parameters w: y; = fi, (x;)

* Bayes rule: p(Y,w/X) = p(Y/X,w)p(w) = p(w/X,Y)p(Y/X)

We fit a distribution...

= | p(w/X,Y) = BELMPM) o0 by /X W) p(w)

p(Y/X)

® From posterior p(w/X,Y) = compute predictive distribution given new input

x* (Vy): p(y/x*, Y, X) = [ p(y,w/x*,Y,X)dw

ply/x", Y. X) = [ ply/x",w)p(w/X,Y)dw

- IEf’p(wﬂ)) [,D()/|X*, W)]

36



Bayesian methods

* RECAP: for uncertainty estimate with Bayesian models
1. Define prior p(w) and likelihood p(Y/X,w)
2. Compute posterior distribution p(w/X,Y)
3. Compute predictive distribution p(y*/x*,Y,X)
® Easy? NO !l = steps 2 and 3 computationally hard in general!

> Typically no closed form for step 2
> High-dimensional integration for step 3

Posterior Beliefs

| @ Evidence

Prior Beliefs

37



Bayesian Linear Regression

Withlp(w|a) = N (w; O,a_ll)land‘p(y,-/x,-, w) = ./\/((D,-Tw,ﬁ‘l),‘we can show that:

p(w/X,Y) =N (w|u,Xx)
>tloal+pd"d
pu=pre’yY

* p(y*,D,a, ) = [ p(ylx*, w, B)p(w|D, , B)dw  =onvolution between 2
-~ Gaussians => Gaussian

> Mean of predictive distribution " ®(x*)
> Variance of predictive distribution 02,.4(x*) = % + O(x*)TZd(xY)

p(yx*, D, a, B) = N(y; " d(x*), % +O(x") T (x"))

38



Bayesian Linear Regression

Predictive variance along x-axis

o* Pred
0% arg min
Training area

6 10
— Ground Truth
® Training points
4 { = BLR Poly
B 1 std. int. 0.8 -
B 2 std. int
2 3 std. int.
0.6 -
0 -
0.4 -
-
-4 | e
—3
_6
-10.0 -7.5 -5.0 -2.5 00 25 50 75 10.0 -10.0

—

o
o

¥ 4

5.0

15

10.0
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Beyond Bayesian Linear Regression

No analytical expression for posterior p(w|D) and p(y|x*,D) in general

= Approximation nedded!

p(W|D) : approximating with a Gaussian distribution qo(w) = N(W‘Q) 1

* 0:parameters of the Gaussian distribution, i.e. mean u, covariance 2

40



Approximating posterior with q,(w)

 Laplace approximation * Variational approximation:

* Fit gg(w) on the mode of p(w|D) Minimize KL(gg(w)||p(w|X, Y))
H=wpap Vup(w)=0
s | VVup(w|X, Y)'|‘W="”MAP * More global fitting

0.8

— approx (Q)
— real (P)
divergence

0.6

0.4

02}

21 o0 1 2 3 4
* Used in Bayesian Logistic regression ¢ Used in Bayesian Neural Networks

41




Laplace for Vision Language Models (VLMs)

* BayesVLM [A]: post-hoc Laplace approximation in VLMs, pre-trained e.g., LAION

* Estimate the distribution of similarities between text/image pairs
* Estimate the distribution of the last layer or text/image encoders independently
 Kronecker-factored (KFAC) Generalized Gauss—-Newton (GGN) Hessian approx

Inputs Encoders Laplace Approx. Embeddings Become Cosine Similarities Become
a8 (Eq. (6)) Probabilistic (Eq. (7)) Probabilistic (Eq. (10))
N(Pa zIM(;)
| ¢ B X i 4 —
= p , ‘

N(Q ETXT)

___________________________________ D 4 | =y
. An image of {scissors}. '—| % ‘—» Y(x, ") x Al — ¢ -
e S S s —

LR '

An image of {crayon pencils}.

42

[A] Post-hoc Probabilistic Vision-Language Models. ICLR 2026 submission



VI in Bayesian Neural Networks (BNNs)

Credit: [Blundell et al., 2015]

* Generally, independence between weights (mean field)+ simple 1D Gaussians
> Define prior over weights, e.g. p(w) = N (w|0, o T)
> Define likelihood, p(y.|x;,w), e.g. for regression p(y;|x;,w) =N (y,;; f"(x;),5™")

® Each weight of the network w; has its own mean p; and variance o;
> 0 ={(1j,07)}jcq1.pr: variational parameters 43



Approximating Predictive Distribution

p(y|x*, D)~ [ p(y|x*,w)ge(w)dw =>approximate with Monte Carlo (MC) sampling

S5
f p(yIx",w)ge(w)dw ~ > p(y|x",w’) w’ ~qe(w) Easytosample from gg(w)
s=1

Classification Analysis Classification Analysis

0.0 1

Epoch = 10000, Accuracy = 100.00%

44




Monte Carlo Dropout

* Dropout as avariational inference [Gal, 2016]
* Bigresults: training with dropoutis a special VIl case

OR®O000RXO

 With some specific approximate posterior distribution

q(W,) = diag(é,)M,, €,; ~ Bernoulli(1 - p;)

* M, deterministic weights, q(W,) approximate posterior

e =>MC sampling of model trained
with dropout: predictive distribution
* Mean ~ prediction
 Std~ uncertainty

MC Dropout Regression

ground truth
e train samples
s preds

preds 1*std

preds 2*std

-10.0 =75 =50 =25 0.0 2.5 5.0 7.5 10.0 45
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Ensembling

| P wyge(wydw = 3" p(ylx", w*) W' ~ go(w)

s=1

* MC sampling <~ ensembling different models
 Simple but effective baseline: train several models on the same dataset
* Usedisagreement, e.g. Mutual Information, as epistemic uncertainty

* Main drawback: High training & inference cost

46
Lakshminarayanan, B., Pritzel, A., and Blundell, C.. Simple and scalable predictive uncertainty estimation using deep ensembles. NeurlPS 2017.



Future directions in Uncertainty Quantification

* A unified uncertainty score (epistemic/aleatoric/calibration) able to
capture different facets of uncertainties

* UQ for sequential decision tasks, forecasting or NLP?
* Which uncertainty for LLMs / Generative VLMs?

* Dense/structured prediction tasks, correlations — segmentation
* How to design UQ score reflecting these correlations?

e Statistical guarantees of UQ?
 Conformal, but needs conditional guarantees
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Thank you for your attention

* Questions?
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