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Context

Big Data: Images & videos everywhere

BBC: 2.4M videos Facebook: 140B images 100M monitoring cameras

• Obvious need to access, organize, search, or classify these data:
Semantic Annotation of Visual Data

• Huge number of applications: mobile visual search, robotics,
autonomous driving, augmented reality, medical imaging etc

• Leading track in major CV conferences during the last decade
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Visual Recognition History
Trends and methods in the last four decades

• 80’s: training Convolutionnal Neural Networks (CNN) with
back-propagation ⇒ postal code reading [LBD+89]

• 90’s: golden age of kernel methods, NN = black box
• 2000’s: BoW + SVM : state-of-the-art CV
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Visual Recognition History
Trends and methods in the last four decades

• Deep learning revival: unsupervised learning (DBN) [HOT06]

• 2012: CNN outstanding success in ImageNet [KSH12]

Huge number of labeled images (106 images)
GPU implementation for training
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Deep Learning since 2012
Transferring Representations learned from ImageNet

• Extract layer ⇒ fixed-size vector, "deep features"
• Now state-of-the for any visual recognition task
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Structured prediction and Deep CNNs

Deformations in Deep CNNs
• Current CNN: only handle limited geometrical deformations
(pooling layers)

• Strong deformations not dealt with
• Probabilistic graphical models: sound for structure modeling

Conditional Random Filed (CRF) & Structural SVM (SSVM)

• Crucial in various visual recognition tasks: detection,
segmentation, pose estimation, depth estimation, sequence
labeling, etc
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Structured prediction and Deep CNNs

Weakly Supervised Learning
• Detailed annotations: costly and tedious to collect

e.g. # global image labels >> # segmentation masks
• Option : using coarse annotations, e.g. global image labels

Incorporating latent variables (region selection)
Models : LSSVM, HCRF
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Weakly Supervised Structured Deep Prediction

MANTRA [DTC15]: new structured output latent variable model

• Minimum Maximum Latent Structural SVM for Image
Classification and Ranking

• New region selection strategy: max+min pooling
max: indicator of the presence of the class
min: indicator of the absence of the class

street image street model coast model highway model
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Weakly Supervised Structured Deep Prediction: WELDON
Weakly Supervised Learning of Deep CNNs [DTC16]

• MANTRA extension for end-to-end training of Deep CNNs
• Multiple max and min regions
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Deep learning for Healthcare

Medical image/video analysis

• Using deep learning for medical image annotation
Unsupervised representation learning for disease diagnosis, e.g.
Alzeihmer [SS13], Prostate labeling [LGOS13]

Supervised learning with CNNs [SRG+16, TSG+16]

Transfer from ImageNet, fine-tuning, training from scratch ?
Impact of network size ?

Nicolas Thome Deep Learning for Visual Recognition 13/ 18



Historical Context Structured Prediction & Deep CNNs Deep Learning for Healthcare

Deep learning for Healthcare

Medical image/video analysis: structured prediction with CNNs

• Using specific network architecture, e.g. U-Net [RFB15]
• Importance of structure ⇒ Embed CNN as a part of the
overall formulation (e.g. CRF, SSVM)

Registration, segmentation [DCB15], weakly-supervised
context [CPBN15]

Deep Convolutional Encoder Networks
for Multiple Sclerosis Lesion

Segmentation [RFB15]

Deep Learning and Structured
Prediction for the Segmentation of
Mass in Mammograms [DCB15]
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Deep learning for Healthcare

Classification of Surgery Videos: APTITUDE Project (LIP6)

• Assistance à l’aPprenTIssage des gesTes chirUrgicaux à partir
de viDEos ⇒ Application to cataract surgery

• Identify & segment different surgery steps, quantify its quality

• Deep CNN
⇒ surgery step

• Prior on step
sequence
⇒ temporal
smoothing (Vitterbi)
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Thank you for your attention ! nicolas.thome@lip6.fr

Deep Learning for Visual Recognition
• Sorbonne Universités - UPMC Paris 6 - LIP6, lab, DAPA Dpt

Machine Learning and Information Access Team (P. Gallinari)
Machine Learning for Vision: N. Thome, M. Cord, ∼ 10 PhD stud.
http://webia.lip6.fr/∼thomen/

• Weakly Supervised Learning of Deep CNNs [DTC15, DTC16]

Project Page: http://webia.lip6.fr/∼durandt/project/mantra.html

• Surgery Video Classification, APTITUDE Project: L. Denoyer
http://www-connex.lip6.fr/∼denoyer/wordpress/

[DTC15] T. Durand, N. Thome, and M. Cord, MANTRA: Minimum Maximum Latent Structural SVM
for Image Classification and Ranking, ICCV 2015.
[DTC16] T. Durand, N. Thome, and M. Cord, WELDON: Weakly Supervised Learning of Deep
Convolutional Neural Networks, CVPR 2016.
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